Conversión de residuos lignocelulósicos urbanos en fuente de bioenergía mediante carbonización hidrotérmica

Authors

DOI:

https://doi.org/10.57188/manglar.2024.022

Abstract

El proceso de carbonización hidrotérmica ha llamado la atención de la comunidad académica y científica como una tecnología emergente y ecológica para la transformación de los residuos lignocelulósicos urbanos en fuente de bioenergía en forma sólida (hidrocarbón), líquida y gaseosa. Esta revisión aborda la comprensión de las propiedades y el potencial uso de estos residuos como fuente de bioenergía. Se analizan las propiedades fisicoquímicas y energéticas de estos residuos, así como los parámetros de operación que influyen en su transformación. Además, se presentan nuevas perspectivas sobre los desafíos futuros relacionados con el uso potencial de estos residuos y el proceso de carbonización. La conversión sostenible de estos residuos urbanos en una fuente de bioenergía contribuirá a reducir la dependencia de los combustibles fósiles, minimizar las emisiones de gases de efecto invernadero, garantizar una gestión eficiente de los residuos urbanos y desarrollar una bioeconomía circular.

Downloads

Download data is not yet available.

References

Ahmad, M. S., Klemeš, J. J., Alhumade, H., Elkamel, A., Mahmood, A., Shen, B., Ibrahim, M., Mukhtar, A., Saqib, S., Asif, S., & Bokhari, A. (2021). Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling. Fuel, 293, 120349. https://doi.org/10.1016/j.fuel.2021.120349

Ahmad, M. S., Mehmood, M. A., Al Ayed, O. S., Ye, G., Luo, H., Ibrahim, M., Rashid, U., Arbi Nehdi, I., & Qadir, G. (2017). Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresource Technology, 224, 708-713. https://doi.org/10.1016/j.biortech.2016.10.090

Ahmed, O. Y., Ries, M. J., & Northrop, W. F. (2019). Emissions factors from distributed, small-scale biomass gasification power generation: Comparison to open burning and large-scale biomass power generation. Atmospheric Environment, 200, 221-227. https://doi.org/10.1016/j.atmosenv.2018.12.024

Akbari, M., Oyedun, A. O., & Kumar, A. (2019). Comparative energy and techno-economic analyses of two different configurations for hydrothermal carbonization of yard waste. Bioresource Technology Reports, 7, 100210. https://doi.org/10.1016/j.biteb.2019.100210

Ayiania, M., Terrell, E., Dunsmoor, A., Carbajal-Gamarra, F. M., & Garcia-Perez, M. (2019). Characterization of solid and vapor products from thermochemical conversion of municipal solid waste woody fractions. Waste Management, 84, 277-285. https://doi.org/10.1016/j.wasman.2018.11.042

Ayilara, M. S., Olanrewaju, O. S., Babalola, O. O., & Odeyemi, O. (2020). Waste Management through Composting: Challenges and Potentials. Sustainability, 12(11), Article 11. https://doi.org/10.3390/su12114456

Bach, Q.-V., Tran, K.-Q., Khalil, R., Skreiberg, Ø., & Seisenbaeva, G. (2013). Comparative Assessment of Wet Torrefaction. Energy & Fuels, 27, 6743-6753. https://doi.org/10.1021/ef401295w

Bayard, R., Benbelkacem, H., Gourdon, R., & Buffière, P. (2018). Characterization of selected municipal solid waste components to estimate their biodegradability. Journal of Environmental Management, 216, 4-12. https://doi.org/10.1016/j.jenvman.2017.04.087

Brown, A. E., Hammerton, J. M., Camargo-Valero, M. A., & Ross, A. B. (2022). Integration of Hydrothermal Carbonisation and Anaerobic Digestion for the Energy Valorisation of Grass. Energies, 15(10), Article 10. https://doi.org/10.3390/en15103495

Carrasco, S., Silva, J., Pino-Cortés, E., Gómez, J., Vallejo, F., Díaz-Robles, L., Campos, V., Cubillos, F., Pelz, S., Paczkowski, S., Cereceda-Balic, F., Vergara-Fernández, A., Lapuerta, M., Pazo, A., Monedero, E., & Hoekman, K. (2020). Experimental Study on Hydrothermal Carbonization of Lignocellulosic Biomass with Magnesium Chloride for Solid Fuel Production. Processes, 8(4), Article 4. https://doi.org/10.3390/pr8040444

Chen, W.-H., Nižetić, S., Sirohi, R., Huang, Z., Luque, R., M.Papadopoulos, A., Sakthivel, R., Phuong Nguyen, X., & Tuan Hoang, A. (2022). Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review. Bioresource Technology, 344, 126207. https://doi.org/10.1016/j.biortech.2021.126207

Dang, H., Xu, R., Zhang, J., Wang, M., & Xu, K. (2023). Hydrothermal carbonization of waste furniture for clean blast furnace fuel production: Physicochemical, gasification characteristics and conversion mechanism investigation. Chemical Engineering Journal, 469, 143980. https://doi.org/10.1016/j.cej.2023.143980

Duque, A., Álvarez, C., Doménech, P., Manzanares, P., & Moreno, A. D. (2021). Advanced Bioethanol Production: From Novel Raw Materials to Integrated Biorefineries. Processes, 9(2), Article 2. https://doi.org/10.3390/pr9020206

Fang, J., Zhan, L., Ok, Y. S., & Gao, B. (2018). Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. Journal of Industrial and Engineering Chemistry, 57, 15-21. https://doi.org/10.1016/j.jiec.2017.08.026

Foong, S. Y., Liew, R. K., Yang, Y., Cheng, Y. W., Yek, P. N. Y., Wan Mahari, W. A., Lee, X. Y., Han, C. S., Vo, D.-V. N., Van Le, Q., Aghbashlo, M., Tabatabaei, M., Sonne, C., Peng, W., & Lam, S. S. (2020). Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chemical Engineering Journal, 389, 124401. https://doi.org/10.1016/j.cej.2020.124401

Funke, A., & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4(2), 160-177. https://doi.org/10.1002/bbb.198

Gallant, R., Farooque, A. A., He, S., Kang, K., & Hu, Y. (2022). A Mini-Review: Biowaste-Derived Fuel Pellet by Hydrothermal Carbonization Followed by Pelletizing. Sustainability, 14(19), Article 19. https://doi.org/10.3390/su141912530

Gallucci, K., Taglieri, L., Papa, A. A., Di Lauro, F., Ahmad, Z., & Gallifuoco, A. (2020). Non-Energy Valorization of Residual Biomasses via HTC: CO2 Capture onto Activated Hydrochars. Applied Sciences, 10(5), Article 5. https://doi.org/10.3390/app10051879

González-Arias, J., Baena-Moreno, F. M., Sánchez, M. E., & Cara-Jiménez, J. (2021). Optimizing hydrothermal carbonization of olive tree pruning: A techno-economic analysis based on experimental results. Science of The Total Environment, 784, 147169. https://doi.org/10.1016/j.scitotenv.2021.147169

González-Arias, J., Sánchez, M. E., Martínez, E. J., Covalski, C., Alonso-Simón, A., González, R., & Cara-Jiménez, J. (2020). Hydrothermal Carbonization of Olive Tree Pruning as a Sustainable Way for Improving Biomass Energy Potential: Effect of Reaction Parameters on Fuel Properties. Processes, 8(10), Article 10. https://doi.org/10.3390/pr8101201

Güleç, F., Riesco, L. M. G., Williams, O., Kostas, E. T., Samson, A., & Lester, E. (2021). Hydrothermal conversion of different lignocellulosic biomass feedstocks – Effect of the process conditions on hydrochar structures. Fuel, 302, 121166. https://doi.org/10.1016/j.fuel.2021.121166

Gupta, A., Thengane, S. K., & Mahajani, S. (2018). CO2 gasification of char from lignocellulosic garden waste: Experimental and kinetic study. Bioresource Technology, 263, 180-191. https://doi.org/10.1016/j.biortech.2018.04.097

Hansen, L. J., Fendt, S., & Spliethoff, H. (2022). Impact of hydrothermal carbonization on combustion properties of residual biomass. Biomass Conversion and Biorefinery, 12(7), 2541-2552. https://doi.org/10.1007/s13399-020-00777-z

Hla, S. S., & Roberts, D. (2015). Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia. Waste Management (New York, N.Y.), 41, 12-19. https://doi.org/10.1016/j.wasman.2015.03.039

Hoover, A., Emerson, R., Williams, C. L., Ramirez-Corredores, M. M., Ray, A., Schaller, K., Hernandez, S., Li, C., & Walton, M. (2019). Grading Herbaceous Biomass for Biorefineries: A Case Study Based on Chemical Composition and Biochemical Conversion. BioEnergy Research, 12(4), 977-991. https://doi.org/10.1007/s12155-019-10028-3

Ipiales, R. P., Mohedano, A. F., Diaz, E., & de la Rubia, M. A. (2022). Energy recovery from garden and park waste by hydrothermal carbonisation and anaerobic digestion. Waste Management, 140, 100-109. https://doi.org/10.1016/j.wasman.2022.01.003

Jaideep, R., Lo, W. H., Lim, G. P., Chua, C. X., Gan, S., Lee, L. Y., & Thangalazhy-Gopakumar, S. (2021). Enhancement of fuel properties of yard waste through dry torrefaction. Materials Science for Energy Technologies, 4, 156-165. https://doi.org/10.1016/j.mset.2021.04.001

Kabir, M. J., Chowdhury, A. A., & Rasul, M. G. (2015). Pyrolysis of Municipal Green Waste: A Modelling, Simulation and Experimental Analysis. Energies, 8(8), Article 8. https://doi.org/10.3390/en8087522

Kambo, H. S., & Dutta, A. (2015). Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Conversion and Management, 105, 746-755. https://doi.org/10.1016/j.enconman.2015.08.031

Kang, K., Zhang, T., Sun, G., Zhu, M., Li, K., & Li, D. (2021). Valorization of tree leaves waste using microwave-assisted hydrothermal carbonization process. GCB Bioenergy, 13(10), 1690-1703. https://doi.org/10.1111/gcbb.12882

Khosravi, A., Zheng, H., Liu, Q., Hashemi, M., Tang, Y., & Xing, B. (2022). Production and characterization of hydrochars and their application in soil improvement and environmental remediation. Chemical Engineering Journal, 430, 133142. https://doi.org/10.1016/j.cej.2021.133142

Kim, D., Lee, K., & Park, K. Y. (2016). Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization. Journal of Industrial and Engineering Chemistry, 42, 95-100. https://doi.org/10.1016/j.jiec.2016.07.037

Köchermann, J., Görsch, K., Wirth, B., Mühlenberg, J., & Klemm, M. (2018). Hydrothermal carbonization: Temperature influence on hydrochar and aqueous phase composition during process water recirculation. Journal of Environmental Chemical Engineering, 6(4), 5481-5487. https://doi.org/10.1016/j.jece.2018.07.053

Kulkarni, P. S., Watwe, V. S., Hipparge, A. J., Sayyad, S. I., Sonawane, R. A., & Kulkarni, S. D. (2019). Valorization of Uncharred Dry Leaves of Ficus benjamina towards Cr (VI) removal from Water: Efficacy Influencing Factors and mechanism. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-55993-z

Lacey, J. A., Aston, J. E., & Thompson, V. S. (2018). Wear Properties of Ash Minerals in Biomass. Frontiers in Energy Research, 6, 119. https://doi.org/10.3389/fenrg.2018.00119

Lago, A., Sanz, M., Gordón, J. M., Fermoso, J., Pizarro, P., Serrano, D. P., & Moreno, I. (2022). Enhanced production of aromatic hydrocarbons and phenols by catalytic co-pyrolysis of fruit and garden pruning wastes. Journal of Environmental Chemical Engineering, 10(3), 107738. https://doi.org/10.1016/j.jece.2022.107738

Langsdorf, A., Volkmar, M., Holtmann, D., & Ulber, R. (2021). Material utilization of green waste: A review on potential valorization methods. Bioresources and Bioprocessing, 8(1), 19. https://doi.org/10.1186/s40643-021-00367-5

Lee, K.-C., Lim, M. S. W., Hong, Z.-Y., Chong, S., Tiong, T. J., Pan, G.-T., & Huang, C.-M. (2021). Coconut Shell-Derived Activated Carbon for High-Performance Solid-State Supercapacitors. Energies, 14(15), Article 15. https://doi.org/10.3390/en14154546

Li, Y., Zhou, L. W., & Wang, R. Z. (2017). Urban biomass and methods of estimating municipal biomass resources. Renewable and Sustainable Energy Reviews, 80, 1017-1030. https://doi.org/10.1016/j.rser.2017.05.214

Liu, X., Xie, Y., & Sheng, H. (2023). Green waste characteristics and sustainable recycling options. Resources, Environment and Sustainability, 11, 100098. https://doi.org/10.1016/j.resenv.2022.100098

Llanos, S. A. V., Gamarra, F. M. C., Collana, J. T. M., Scheineder, S. H., Chuquizuta, J. C. M., Mendoza, P. C., & Quispea, A. P. B. (2023). Estimation of Emission Factors and Ignitability Index from the Physicochemical Characterization of Ficus Benjamina for Energy Purposes. Chemical Engineering Transactions, 103, 931-936. https://doi.org/10.3303/CET23103156

Lu, X., Pellechia, P. J., Flora, J. R. V., & Berge, N. D. (2013). Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose. Bioresource Technology, 138, 180-190. https://doi.org/10.1016/j.biortech.2013.03.163

Lucian, M., & Fiori, L. (2017). Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis. Energies, 10(2), Article 2. https://doi.org/10.3390/en10020211

Maccarini, A. C., Bessa, M. R., & Errera, M. R. (2020). Energy valuation of urban pruning residues feasibility assessment. Biomass and Bioenergy, 142, 105763. https://doi.org/10.1016/j.biombioe.2020.105763

Magdziarz, A., Wilk, M., & Wądrzyk, M. (2020). Pyrolysis of hydrochar derived from biomass – Experimental investigation. Fuel, 267, 117246. https://doi.org/10.1016/j.fuel.2020.117246

Maniscalco, M. P., Volpe, M., & Messineo, A. (2020). Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review. Energies, 13(16), Article 16. https://doi.org/10.3390/en13164098

Marzbali, M. H., Paz-Ferreiro, J., Kundu, S., Ramezani, M., Halder, P., Patel, S., White, T., Madapusi, S., & Shah, K. (2021). Investigations into distribution and characterisation of products formed during hydrothermal carbonisation of paunch waste. Journal of Environmental Chemical Engineering, 9(1), 104672. https://doi.org/10.1016/j.jece.2020.104672

McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83(1), 37-46. https://doi.org/10.1016/S0960-8524(01)00118-3

Medina-Martos, E., Istrate, I.-R., Villamil, J. A., Gálvez-Martos, J.-L., Dufour, J., & Mohedano, Á. F. (2020). Techno-economic and life cycle assessment of an integrated hydrothermal carbonization system for sewage sludge. Journal of Cleaner Production, 277, 122930. https://doi.org/10.1016/j.jclepro.2020.122930

Mendoza Martinez, C. L., Alves Rocha, E. P., Oliveira Carneiro, A. de C., Borges Gomes, F. J., Ribas Batalha, L. A., Vakkilainen, E., & Cardoso, M. (2019). Characterization of residual biomasses from the coffee production chain and assessment the potential for energy purposes. Biomass and Bioenergy, 120, 68-76. https://doi.org/10.1016/j.biombioe.2018.11.003

Mendoza Martinez, C. L., Sermyagina, E., Saari, J., Silva de Jesus, M., Cardoso, M., Matheus de Almeida, G., & Vakkilainen, E. (2021). Hydrothermal carbonization of lignocellulosic agro-forest based biomass residues. Biomass and Bioenergy, 147, 106004. https://doi.org/10.1016/j.biombioe.2021.106004

Minaret, J., & Dutta, A. (2016). Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel. Bioresource Technology, 200, 804-811. https://doi.org/10.1016/j.biortech.2015.11.010

Mohammed, I. S., Na, R., Kushima, K., & Shimizu, N. (2020). Investigating the Effect of Processing Parameters on the Products of Hydrothermal Carbonization of Corn Stover. Sustainability, 12(12), Article 12. https://doi.org/10.3390/su12125100

Moreno, A. I., & Font, R. (2015). Pyrolysis of furniture wood waste: Decomposition and gases evolved. Journal of Analytical and Applied Pyrolysis, 113, 464-473. https://doi.org/10.1016/j.jaap.2015.03.008

Moreno, A. I., Font, R., & Conesa, J. A. (2016). Physical and chemical evaluation of furniture waste briquettes. Waste Management, 49, 245-252. https://doi.org/10.1016/j.wasman.2016.01.048

Nakason, K., Panyapinyopol, B., Kanokkantapong, V., Viriya-empikul, N., Kraithong, W., & Pavasant, P. (2018). Characteristics of hydrochar and liquid fraction from hydrothermal carbonization of cassava rhizome. Journal of the Energy Institute, 91(2), 184-193. https://doi.org/10.1016/j.joei.2017.01.002

Panigrahi, S., & Dubey, B. K. (2019). Electrochemical pretreatment of yard waste to improve biogas production: Understanding the mechanism of delignification, and energy balance. Bioresource Technology, 292, 121958. https://doi.org/10.1016/j.biortech.2019.121958

Paul, S., Dutta, A., & Defersha, F. (2018). Biocarbon, biomethane and biofertilizer from corn residue: A hybrid thermo-chemical and biochemical approach. Energy, 165, 370-384. https://doi.org/10.1016/j.energy.2018.09.182

Pauline, A. L., & Joseph, K. (2020). Hydrothermal carbonization of organic wastes to carbonaceous solid fuel – A review of mechanisms and process parameters. Fuel, 279, 118472. https://doi.org/10.1016/j.fuel.2020.118472

Pedroza, M. M., Neves, L. H. D., Paz, E. C. S., Silva, F. M., Rezende, C. S. A., Colen, A. G. N., Arruda, M. G., Pedroza, M. M., Neves, L. H. D., Paz, E. C. S., Silva, F. M., Rezende, C. S. A., Colen, A. G. N., & Arruda, M. G. (2021). Activated charcoal production from tree pruning in the Amazon region of Brazil for the treatment of gray water. Journal of Applied Research and Technology, 19(1), 49-65.

Pérez-Arévalo, J. J., & Velázquez-Martí, B. (2018). Evaluation of pruning residues of Ficus benjamina as a primary biofuel material. Biomass and Bioenergy, 108, 217-223. https://doi.org/10.1016/j.biombioe.2017.11.017

Phuang, Y. W., Ng, W. Z., Khaw, S. S., Yap, Y. Y., Gan, S., Lee, L. Y., & Thangalazhy-Gopakumar, S. (2021). Wet torrefaction pre-treatment of yard waste to improve the fuel properties. Materials Science for Energy Technologies, 4, 211-223. https://doi.org/10.1016/j.mset.2021.06.005

Puccini, M., Ceccarini, L., Antichi, D., Seggiani, M., Tavarini, S., Hernandez Latorre, M., & Vitolo, S. (2018). Hydrothermal Carbonization of Municipal Woody and Herbaceous Prunings: Hydrochar Valorisation as Soil Amendment and Growth Medium for Horticulture. Sustainability, 10(3), Article 3. https://doi.org/10.3390/su10030846

Qadi, N., Takeno, K., Mosqueda, A., Kobayashi, M., Motoyama, Y., & Yoshikawa, K. (2019). Effect of Hydrothermal Carbonization Conditions on the Physicochemical Properties and Gasification Reactivity of Energy Grass. Energy & Fuels, 33(7), 6436-6443. https://doi.org/10.1021/acs.energyfuels.9b00994

Reza, M. S., Taweekun, J., Afroze, S., Siddique, S. A., Islam, M. S., Wang, C., & Azad, A. K. (2023). Investigation of Thermochemical Properties and Pyrolysis of Barley Waste as a Source for Renewable Energy. Sustainability, 15(2), Article 2. https://doi.org/10.3390/su15021643

Reza, M. T., Uddin, M. H., Lynam, J. G., Hoekman, S. K., & Coronella, C. J. (2014). Hydrothermal carbonization of loblolly pine: Reaction chemistry and water balance. Biomass Conversion and Biorefinery, 4(4), 311-321. https://doi.org/10.1007/s13399-014-0115-9

Romano, P., Stampone, N., & Di Giacomo, G. (2023). Evolution and Prospects of Hydrothermal Carbonization. Energies, 16(7), Article 7. https://doi.org/10.3390/en16073125

Saqib, N. U., Oh, M., Jo, W., Park, S.-K., & Lee, J.-Y. (2017). Conversion of dry leaves into hydrochar through hydrothermal carbonization (HTC). Journal of Material Cycles and Waste Management, 19(1), 111-117. https://doi.org/10.1007/s10163-015-0371-1

Şen, A. U., & Pereira, H. (2021). State-of-the-Art Char Production with a Focus on Bark Feedstocks: Processes, Design, and Applications. Processes, 9(1), Article 1. https://doi.org/10.3390/pr9010087

Sharma, H. B., & Dubey, B. K. (2020a). Binderless fuel pellets from hydrothermal carbonization of municipal yard waste: Effect of severity factor on the hydrochar pellets properties. Journal of Cleaner Production, 277, 124295. https://doi.org/10.1016/j.jclepro.2020.124295

Sharma, H. B., & Dubey, B. K. (2020b). Co-hydrothermal carbonization of food waste with yard waste for solid biofuel production: Hydrochar characterization and its pelletization. Waste Management, 118, 521-533. https://doi.org/10.1016/j.wasman.2020.09.009

Sharma, H. B., Panigrahi, S., & Dubey, B. K. (2019). Hydrothermal carbonization of yard waste for solid bio-fuel production: Study on combustion kinetic, energy properties, grindability and flowability of hydrochar. Waste Management, 91, 108-119. https://doi.org/10.1016/j.wasman.2019.04.056

Sharma, H. B., Sarmah, A. K., & Dubey, B. (2020). Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renewable and Sustainable Energy Reviews, 123, 109761. https://doi.org/10.1016/j.rser.2020.109761

Sharma, K. D., & Jain, S. (2020). Municipal solid waste generation, composition, and management: The global scenario. Social Responsibility Journal, 16(6), 917-948. https://doi.org/10.1108/SRJ-06-2019-0210

Silva de Souza Lima Cano, N., Iacovidou, E., & Rutkowski, E. W. (2022). Typology of municipal solid waste recycling value chains: A global perspective. Journal of Cleaner Production, 336, 130386. https://doi.org/10.1016/j.jclepro.2022.130386

Singh, Y. D., Mahanta, P., & Bora, U. (2017). Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renewable Energy, 103, 490-500. https://doi.org/10.1016/j.renene.2016.11.039

Śliz, M., & Wilk, M. (2020). A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow. Renewable Energy, 156, 942-950. https://doi.org/10.1016/j.renene.2020.04.124

Suárez, L., Díaz, T. E., Benavente-Ferraces, I., Plaza, C., Almeida, M., & Centeno, T. A. (2022). Hydrothermal treatment as a complementary tool to control the invasive Pampas grass (Cortaderia selloana). Science of The Total Environment, 807, 150796. https://doi.org/10.1016/j.scitotenv.2021.150796

Tabal, A., Barakat, A., Aboulkas, A., & El harfi, K. (2021). Pyrolysis of ficus nitida wood: Determination of kinetic and thermodynamic parameters. Fuel, 283, 119253. https://doi.org/10.1016/j.fuel.2020.119253

Usman, M., Ren, S., Ji, M., O-Thong, S., Qian, Y., Luo, G., & Zhang, S. (2020). Characterization and biogas production potentials of aqueous phase produced from hydrothermal carbonization of biomass – Major components and their binary mixtures. Chemical Engineering Journal, 388, 124201. https://doi.org/10.1016/j.cej.2020.124201

Vega, L. Y., López, L., Valdés, C. F., & Chejne, F. (2019). Assessment of energy potential of wood industry wastes through thermochemical conversions. Waste Management, 87, 108-118. https://doi.org/10.1016/j.wasman.2019.01.048

Velázquez-Martí, B., Gaibor-Cházvez, J., Niño-Ruiz, Z., & Narbona-Sahuquillo, S. (2018). Complete characterization of pruning waste from the lechero tree (Euphorbia laurifolia L.) as raw material for biofuel. Renewable Energy, 129, 629-637. https://doi.org/10.1016/j.renene.2018.06.050

Velvizhi, G., Goswami, C., Shetti, N. P., Ahmad, E., Kishore Pant, K., & Aminabhavi, T. M. (2022). Valorisation of lignocellulosic biomass to value-added products: Paving the pathway towards low-carbon footprint. Fuel, 313, 122678. https://doi.org/10.1016/j.fuel.2021.122678

Voća, N., Leto, J., Karažija, T., Bilandžija, N., Peter, A., Kutnjak, H., Šurić, J., & Poljak, M. (2021). Energy Properties and Biomass Yield of Miscanthus x Giganteus Fertilized by Municipal Sewage Sludge. Molecules, 26(14), 4371. https://doi.org/10.3390/molecules26144371

Volpe, M., Goldfarb, J. L., & Fiori, L. (2018). Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties. Bioresource Technology, 247, 310-318. https://doi.org/10.1016/j.biortech.2017.09.072

Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 62, 33-86. https://doi.org/10.1016/j.pecs.2017.05.004

Wilk, M., & Magdziarz, A. (2017). Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus. Energy, 140, 1292-1304. https://doi.org/10.1016/j.energy.2017.03.031

Wilk, M., Magdziarz, A., Kalemba-Rec, I., & Szymańska-Chargot, M. (2020). Upgrading of green waste into carbon-rich solid biofuel by hydrothermal carbonization: The effect of process parameters on hydrochar derived from acacia. Energy, 202, 117717. https://doi.org/10.1016/j.energy.2020.117717

Wu, Q., Yu, S., Hao, N., Wells, T., Meng, X., Li, M., Pu, Y., Liu, S., & Ragauskas, A. J. (2017). Characterization of products from hydrothermal carbonization of pine. Bioresource Technology, 244, 78-83. https://doi.org/10.1016/j.biortech.2017.07.138

Xin, S., Mi, T., Liu, X., & Huang, F. (2018). Effect of torrefaction on the pyrolysis characteristics of high moisture herbaceous residues. Energy, 152, 586-593. https://doi.org/10.1016/j.energy.2018.03.104

Yan, J., Oyedeji, O., Leal, J. H., Donohoe, B. S., Semelsberger, T. A., Li, C., Hoover, A. N., Webb, E., Bose, E. A., Zeng, Y., Williams, C. L., Schaller, K. D., Sun, N., Ray, A. E., & Tanjore, D. (2020). Characterizing Variability in Lignocellulosic Biomass: A Review. ACS Sustainable Chemistry & Engineering, 8(22), 8059-8085. https://doi.org/10.1021/acssuschemeng.9b06263

Yang, G., Song, S., Li, J., Tang, Z., Ye, J., & Yang, J. (2019). Preparation and CO2 adsorption properties of porous carbon by hydrothermal carbonization of tree leaves. Journal of Materials Science & Technology, 35(5), 875-884. https://doi.org/10.1016/j.jmst.2018.11.019

Yao, Z., Ma, X., & Lin, Y. (2016). Effects of hydrothermal treatment temperature and residence time on characteristics and combustion behaviors of green waste. Applied Thermal Engineering, 104, 678-686. https://doi.org/10.1016/j.applthermaleng.2016.05.111

Zaccariello, L., Battaglia, D., Morrone, B., & Mastellone, M. L. (2022). Hydrothermal Carbonization: A Pilot-Scale Reactor Design for Bio-waste and Sludge Pre-treatment. Waste and Biomass Valorization, 13(9), 3865-3876. https://doi.org/10.1007/s12649-022-01859-x

Zhang, L., & Sun, X. (2016). Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Management, 48, 115-126. https://doi.org/10.1016/j.wasman.2015.11.032

Zjup, W., Yan, M., Zhang, S., Wibowo, H., Grisdanurak, N., Cai, Yi, Zhou, Xuanyou, Kanchanatip, E., & Antoni, A. (2020). Biochar and pyrolytic gas properties from pyrolysis of simulated municipal solid waste (SMSW) under pyrolytic gas atmosphere. Waste Disposal & Sustainable Energy, 2. https://doi.org/10.1007/s42768-019-00030-y

Published

2024-04-30

Issue

Section

ARTÍCULO DE REVISIÓN

How to Cite

Conversión de residuos lignocelulósicos urbanos en fuente de bioenergía mediante carbonización hidrotérmica. (2024). Manglar, 21(2), 203-215. https://doi.org/10.57188/manglar.2024.022

Most read articles by the same author(s)