Presencia natural de Metarhizium en suelos agrícolas de aguacate (Persea americana Mill.) en Colima, México
DOI:
https://doi.org/10.57188/manglar.2023.008Resumo
El aguacate (Persea americana Mill.) se ha convertido en uno de los frutos más importantes en el mundo, donde México es el principal productor y exportador a nivel mundial, esto ha provocado un acelerado crecimiento en el establecimiento de plantaciones de monocultivo de aguacate, favoreciendo el incremento de plagas de insectos y ácaros, lo que ha dirigido la búsqueda de estrategias de control biológico para un manejo integrado de plagas. El objetivo de este estudio fue aislar hongos entomopatógenos del suelo, e identificar mediante el factor de elongación de la traducción 1-α (5’TEF), las especies presentes en un huerto convencional de aguacate. Durante el muestreo se obtuvo un total de 34 aislados, pertenecientes al género Metarhizium, 23 aislados identificados como Metarhizium robertsii y 11 como Metarhizium guizhouense. Estos resultados muestran la escasa diversidad de especies de hongos entomopatógenos asociados a la rizosfera del cultivo del aguacate, y sugieren que, su presencia podría estar asociada a su capacidad para resistir las prácticas agronómicas, las cuales inducen su actividad endófita. Es necesario comprender el papel que desempeña Metarhizium en la rizosfera, esto permitirá desarrollar programas de control biológico específicos para cada cultivo, y así garantizar su éxito en el control de plagas.
Downloads
Referências
Araújo, R. G., Rodríguez-Jasso, R. M., Ruíz, H. A., Pintado, M. M. E. & Aguilar, C. N. (2018). Avocado by-products: Nutritional and functional properties: a review. Trends in Food Science & Technology, 80, 51-60.
Arthurs, S. & Dara, S. K. (2018). Microbial biopesticides for invertebrate pests and their markets in the United States. Journal of Invertebrate Pathology, 165, 13-21.
Aung, O. M., Soytong, K. & Hyde, K. D. (2008). Diversity of entomopathogenic fungi in rainforests of Chiang Mai Province, Thailand. Fungal Diversity, 30, 15-22.
Barelli, L., Waller, A. S., Behie, S. W. & Bidochka, M. J. (2020). Plant microbiome analysis after Metarhizium amendment reveals increases in abundance of plant growth-promoting organisms and maintenance of disease suppressive soil. PLoS ONE 15: e0231150.
Barker, C. W. & Barker, G. M. (1998). Generalist entomopathogens as biological indicators of deforestation and agricultural land use impacts on Waikato soils. New Zealand Journal of Ecology, 22, 189-196.
Barsimantov, J. & Navia, J. A. (2012). Forest cover change and land tenure change in Mexico´s avocado region: Is community forestry related to reduced deforestation for high value crops? Applied Geography, 32, 844-853.
Baydar, R., Güven, Ö. & Karaca, I. (2016). Occurrence of entomopathogenic fungi in agricultural soils from Isparta province in Turkey and their pathogenicity to Galleria mellonella (L.) (Lepidoptera: Pyralidae) larvae. Egyptian Journal of Biological Pest Control, 26, 323-327.
Behie, S. W., Jones, S. J. & Bidochka, M. J. (2015). Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology, 13, 112-119.
Bischoff, J. F., Rehner, S. A. & Humber, R. A. (2009). A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, 101, 508-530.
Botelho, A. B., Alves-Pereira, A., Prado, R., Zucchi, M. I. & Delalibera, I. (2019). Metarhizium species in soil from Brazilian biomes: a study of diversity, distribution, and association with natural and agricultural environments. Fungal Ecology, 41, 289-300.
Clifton, E. H., Jaronski, S. T., Hodgson, E. W. & Gassman, A. J. (2015). Abundance of soil-borne entomopathogenic fungi in organic and conventional fields in the midwestern USA with an emphasis on the effect of herbicides and fungicides on fungal persistence. PLOS ONE, 10, e0133613.
Deaver, N. R., Hesse, C., Kuske, C. R. & Porras-Alfaro, A. (2019). Presence and Distribution of Insect-Associated and Entomopathogenic Fungi in a Temperate Pine Forest Soil: an Integrated Approach. Fungal Biology, 123, 864-874.
Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K. & Mattick, J. S. (1991). Touchdown PCR to circumvent spurious priming during gene amplification. Nucleic Acids Research, 19, 4008.
Dreher, M. L. & Davenport, A. J. (2013). Hass avocado composition and potential health effects. Critical Reviews in Food Science and Nutrition, 53, 738-750.
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792-1797.
Fernández-Bravo, M., Gschwend, F., Mayerhofer, J., Hug, A., Widmer, F. & Enkerli, J. (2021). Land-Use Type Drives Soil Population Structures of the Entomopathogenic Fungal Genus Metarhizium. Microorganisms, 9, 1380.
Fisher, J. J., Rehner, S. A. & Bruck, D. J. (2011). Diversity of rhizosphere associated entomopathogenic fungi of perennial herbs, shrubs and coniferous trees. Journal of Invertebrate Pathology, 106, 289-295.
Galán-Franco, L. A., Morales-Loredo, A., Álvarez-Ojeda, G., López-Arroyo, J. I., Arévalo-Niño, K., Sandoval-Coronado, C. & Quintero-Zapata, I. (2011). Isolation and characterization of entomopathogenic fungi obtained from citrus-growing areas of Mexico. Southwestern Entomologist, 36, 443-449.
Galindo-Tovar, M. E., Ogata-Aguilar, N. & Arzate-Fernández, A. M. (2008). Some aspects of avocado (Persea americana Mill.) diversity and domestication in Mesoamerica. Genetic Resources and Crop Evolution, 55, 441-450.
Garrido-Jurado, I., Fernández-Bravo, M., Campos, C. & Quesada-Moraga, E. (2015). Diversity of entomopathogenic Hypocreales in soil and phylloplanes of five Mediterranean cropping systems. Journal of Invertebrate Pathology, 130, 97-106.
Gebremariam, A., Chekol Y. & Assefa, F. (2021). Phenotypic, molecular, and virulence characterization of entomopathogenic fungi, Beauveria bassiana (Balsam) Vuillemin, and Metarhizium anisopliae (Metschn.) Sorokin from soil samples of Ethiopia for the development of mycoinsecticide. Heliyon 7: e07091
Goble, T. A., Dames, J. F., Hill, M. P. & Moore S. D. (2010). The effects of farming system, habitat type and bait type on the isolation of entomopathogenic fungi from citrus soils in the Eastern Cape Province, South Africa. BioControl, 55, 399-412.
Goldsmith, A., Loftin, K., Steinkraus, D., Szalanski, A., Cleary, D. & Castrillo, L. (2021). Isolation of Metarhizium guizhouense and Metarhizium robertsii strains from soil-exposed Amblyomma americanum (Acarina: Ixodidae) from northwest Arkansas, USA. Florida Entomologist, 104, 205-212.
Hall, T. A. (1999). Bioedit: a user-friendly biological sequence alignment editor and análisis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
Hernández-Domínguez, C., Guzmán-Franco, A.W., Carrillo-Benítez, M.G., Alatorre-Rosas, R., Rodríguez-Leyva, E. & Villanueva-Jiménez, J. A. (2016). Specific diversity of Metarhizium isolates infecting Aeneolamia spp. (Hemiptera: Cercopidae) in sugarcane plantations. Neotropical Entomology, 45, 80-87.
Humber, R. A. (2012). Identification of entomopathogenic fungi. En Lacey, L. A. (Ed.). Manual of Techniques in Insect Pathology (pp. 151-186). Londres: Academic Press.
Ignoffo, C. M. (1992). Environmental factors affecting persistence of entomopathogens. Florida Entomologist, 75, 516-525.
Imoulan, A., Alaoui, A. & El Meziane, A. (2011). Natural occurrence of soil-borne entomopathogenic fungi in the Moroccan endemic forest of Argania spinosa and their pathogenicity to Ceratitis capitata. World Journal of Microbiol and Biotechnology, 27, 2619-2628.
Jabbour, R. & Barbercheck, M. E. (2009). Soil management effects on entomopathogenic fungi during the transition to organic agriculture in a feed grain rotation. Biological Control, 51, 435-443.
Keyser, C. A., De Fine, H. H. L., Steinwender, B. M. & Meyling, N. V. (2015) Diversity within the entomopathogenic fungal species Metarhizium flavoviride associated agricultural crops in Denmark. BMC Microbiology, 15, 249.
Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.
Meyling, N. V. & Eilenberg, J. (2006). Occurrence and distribution of soil borne entomopathogenic fungi within a single organic agroecosystem. Agriculture, Ecosystems and Environment, 113, 336-341.
Meyling, N. V. (2007). Methods for isolation of entomopathogenic fungi from the soil environment. Department of Ecology. Frederiksberg Denmark University of Copenhagen, 1-18. http://www.orgprints.org/11200.3
Meyling, N. V. & Eilenberg, J. (2007). Ecology of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biological Control, 43, 145-155.
Moonjely, S. & Bidochka, M. J. (2019). Generalist and specialist Metarhizium insect pathogens retain ancestral ability to colonize plant roots. Fungal Ecology, 41, 209-217.
Muñiz-Reyes, E., Guzmán-Franco, A.W., Sánchez-Escudero, J. & Nieto-Angel R. (2014). Occurrence of entomopathogenic fungi in tejocote (Crataegus mexicana) orchard soils and their pathogenicity against Rhagoletis pomonella. Journal of Applied Microbiology, 117, 1450-1462.
Pérez-González, V. H., Guzmán-Franco, A. W., Alatorre-Rosas, R., Hernández-López, J., Hernández-López, A., Carrillo-Benítez, M. G. & Baverstock, J. (2014). Specific diversity of the entomopathogenic fungi Beauveria and Metarhizium in Mexican agricultural soils. Journal of Invertebrate Pathology, 119, 54-61.
Quesada-Moraga, E., Navas-Cortés, J. A., Maranhao, E.A., Ortiz-Urquiza, A. & Santiago Álvarez, C. (2007). Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological research, 111, 947-966.
Rehner, S.A. & Buckley, E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97, 84-98.
Roberts, D. W. & St. Leger, R. J. (2004). Metarhizium spp., cosmopolitan insect-pathogenic fungi: Mycological aspects. Advances in Applied Microbiology, 54, 1-70.
Sasan, R. K. & Bidochka, M. J. (2012). The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany, 99, 101-107.
Steinwender, B. M., Enkerli, J., Widmer, F., Eilenberg, J., Thorup-Kristensen, K. & Meyling, N. V. (2014). Molecular diversity of the entomopathogenic fungal Metarhizium community within an agroecosystem. Journal of Invertebrate Pathology, 123, 6-12.
Tamura, K., Stetcher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725-2729.
Thakur, R. & Sandhu, S. S. (2010). Distribution, occurrence and natural invertebrate hosts of indigenous entomopathogenic fungi of Central India. Indian Journal of Microbiology, 50, 89-96.
Uzman, D., Pliester, J., Leyer, I., Entling, M. H. & Reineke, A. (2019). Drivers of entomopathogenic fungi presence in organic and conventional vineyard soils. Applied Soil Ecology, 133, 89-97.
Vänninen, I. (1996). Distribution and occurrence of four entomo-pathogenic fungi in Finland: effect of geographic location, habitat type, and soil type. Mycological Research, 100, 93-101.
Wysoki, M., Van Den Berg, M. A., Ish-Am, G., Gazit, S., Peña, J. E. & Waite, G. K. (2002). Pests and pollinators of avocado. En J. E. Peña, J. L. Sharp y M. Wysoki. (Eds.). Tropical Fruits Pests and Pollinators: Biology, Economic Importance, Natural Enemies and Control (pp. 223-293). Londres: CABI Publishing.
Zimmermann, G. (1986). The Galleria bait method for detection of entomopathogenic fungi in soil. Journal of Applied Entomology, 102, 213-215.
Downloads
Publicado
Edição
Secção
Licença
Direitos de Autor (c) 2023 José C. Rodríguez-Rodríguez, Miguel A. Ayala-Zermeño, Cecilia Neri-Luna, Beatriz Rodríguez-Vélez, Adrien Gallou, José P. Castruita-Domínguez
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição 4.0.
Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license