Interpretación del ECG como herramienta diagnostica en la electrofisiología cardiaca

Autores/as

DOI:

https://doi.org/10.57188/ricsa.2025.026

Palabras clave:

Electrocardiografía, Electrofisiología, Arritmias cardíacas, Fibrilación auricular, Educación médica, Inteligencia artificial

Resumen

Las enfermedades cardiovasculares siguen siendo la causal más resaltante de decesos a nivel mundial, y los trastornos en la conducción eléctrica cardíaca, como las arritmias, desempeñan un papel central en esta carga. Este artículo de revisión presenta un enfoque integrador de la electrofisiología cardíaca, desde los procesos fisiológicos de la generación y propagación de la señal eléctrica cardiaca, hasta la interpretación de los componentes del ECG y la evaluación del vector cardíaco. Se incluyen protocolos diagnósticos con registros intracavitarios y se exploran tecnologías emergentes como la inteligencia artificial aplicada al análisis de señales electrocardiográficas, además del uso de sistemas portátiles de monitoreo multiderivación. Estos avances ofrecen nuevas perspectivas para la detección de arritmias, la segmentación del riesgo y las estrategias terapéuticas. El artículo resalta la importancia de fomentar la investigación en electrofisiología y de fortalecer la educación médica mediante metodologías aplicadas, con el objetivo de mejorar la formación clínica y la calidad de la atención cardiovascular.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

1. World Health Organization. Cardiovascular diseases (CVDs). Geneva: WHO [Internet]. 2021 Jun 11 [cited 2025 May 20]. Disponible en: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

2. Zipes DP, Jalife J, Stevenson W. Cardiac electrophysiology: from cell to bedside. 7th ed. Philadelphia: Elsevier; 2017 May 13. 396-472p

3. Lippi G, Sanchis-Gomar F, Cervellin G, Henry BM. Epidemiology and prevention of atrial fibrillation: An increasing epidemic and public health challenge. Int J Stroke. 2021 Feb 19.58(2):95-103.

4. Zipes DP, Jalife J. Mechanisms of cardiac arrhythmias and sudden cardiac death. Card Electrophysiol Clin. 2019 Feb;11(2):157-172.

5. Miranda J, López M, González A, et al. Challenges and opportunities in cardiovascular research in Latin America: a call for strengthening biomedical education. Rev Med Chil. 2020 Jun;148(10):1335-1342.

6. Miranda J, López M, González A, et al. Cardiovascular disease burden and research priorities in Latin America. J Am Coll Cardiol. 2020;75(15):1855-1865.

7. Sun T., Grassam-Row A., Pu Z et al. Dbh+ catecholaminergic cardiomyocytes contribute to the structure and function of the cardiac conduction system in murine heart. Nat Commun. 2023 Nov 28.14(7801)

8. Li T, Marashly Q, Kim JA, Li N, Chelu MG. Enfermedades de la conducción cardíaca: comprensión de los mecanismos moleculares para descubrir dianas terapéuticas futuras. Expert Opin Ther Targets. 2024 May 13.28(5)

9. Adams W, Raisch T, Zhao Y, Davalos R, Barrett S, King DR, et al. Extracellular Perinexal Separation Is a Principal Determinant of Cardiac Conduction. Circ Res. 2023 Sept 8.133(8):658–73

10. Nowak MB, Veeraraghavan R, Poelzing S, Weinberg SH. Cellular size, gap junctions, and sodium channel properties govern developmental changes in cardiac conduction. Front Physiol. 2021 Oct 25.12:731025

11. Wu X, Payne LB, Gourdie RG. Gap junctional and ephaptic coupling in cardiac electrical propagation: homocellular and heterocellular perspectives. J Physiol. 2025 May 31. 603(11)

12. Kléber AG, Rudy Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev. 2004 April 01. 84(2):431–88

13. Weinberg SH. Sodium channel subpopulations with distinct biophysical properties and subcellular localization enhance cardiac conduction. J Gen Physiol. 2023 Jun 7.155(8): e202313382

14. Aumentado-Armstrong T, Kadivar A, Savadjiev P, Zucker SW, Siddiqi K. Conduction in the heart wall: Helicoidal fibers minimize diffusion bias. Scientific Reports. 2018 May 08. 8(1):7165

15. López M, García J, Pérez R. Fundamentos electrofisiológicos del electrocardiograma. Rev Mex Cardiol. 2019 Jul-Sept. 30(3):123-130

16. Zavala Villeda JA. Vectores cardíacos, derivaciones del plano frontal y horizontal, ondas, intervalos y segmentos en el electrocardiograma. Rev Mex Anestesiol. 2018 Apr-Jun. 41(Supl 1):S186-S189.

17. Sociedad Interamericana de Cardiología. Electrocardiografía básica [Internet]. Colombia: Universidad Pontífica BOlivariana 2015 [citado 3 de julio de 2025]. Disponible en: https://www.siacardio.com/wp-content/uploads/2015/01/ECG-Capitulo-1-Conceptos-b-%C3%ADsicos.pdf

18. My EKG. Intervalos y segmentos del electrocardiograma [Internet]. [citado 3 de julio de 2025]. Disponible en: https://www.my-ekg.com/generalidades-ekg/intervalos-segmentos-ekg.html l

19. Huszar. Interpretación del ECG: Monitorización y 12 derivaciones. 6a ed. Wesley, K. España. Elsevier. 2017 Jun 23. 175-179 p.

20. Oltmann A, Kusche R, Rostalski P. Spatial sensitivity of ECG electrode placement. De Gruyter. 2021. 7(2): 151-154

21. Kligfield P, Gettes LS, Bailey J, Childers R, Deal B, Hancock E, et al. Recommendations for the standardization and interpretation of the electrocardiogram: Part I: The electrocardiogram and its technology. Circulation. 2007 Mar 13.115(10):1306-24

22. Rautaharju PM, Surawicz B, Gettes LS, Bailey JJ, Childers R, Deal BJ, et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: Part IV: The ST segment, T and U waves, and the QT interval. Circulation. 2009 mar 17. 119(10):e241-50.

23. Uribe W., Duque M., Medina E. Interpretación del electrocardiograma y arritmias. Sociedad Interamericana de Cardiología. Bogotá, D.C.: Colombia. 2015. 15: 119-90

24. Ramos J, Rojas J, Martínez M. El electrocardiograma: una oportunidad de aprendizaje. Rev Med Inst Mex Seguro Soc. 2016. 54(6):738-745

25. Universidad Nacional Autónoma de México. Taller de interpretación del electrocardiograma [Internet]. Departamento de Fisiología, facultad de medicina. [citado 3 de julio de 2025]. Disponible en: https://fisiologia.facmed.unam.mx/index.php/taller-de-interpretacion-del-electrocardiograma/

26. González-Pérez G, González-Cano JR. Métodos para determinar el eje eléctrico en un electrocardiograma. Arch Cardiol Mex. 2016 jan-mar. 27(s1): s35-s40

27. Watson R. Interpretación del electrocardiograma normal: Electrocardiograma. Revista Ciencia y Salud Integrando Conocimientos. 2022 oct 21. 6(5):85-91.

28. Pellicciari R, Marinozzi M, Camaioni E, et al. Spiro [2.2]pentane as a dissymmetric scaffold for conformationally constrained analogues of glutamic acid> focus on racemic 1/aminospiro[2.2]pentyl/1,4/dicarboxylic acids. National Library of Medicine. 2002 Aug 9.

29. Josephson ME. Clinical cardiac electrophysiology: techniques and interpretations. 5th ed. Philadelphia (PA): Wolters Kluwer Health; 2016.

30. Attia ZI, Noseworthy PA, Lopez‑Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, et al. An artificial intelligence–enabled ECG algorithm for the identification of patients with low ejection fraction: a retrospective study. Lancet. 2019 Mar 23.394(10201):861–7.

31. Turakhia MP, Desai M, Hedlin H, Rajmane A, Talati N, Ferris T, et al. Rationale and design of a large‑scale, app‑based study to identify cardiac arrhythmias using a smartwatch: the Apple Heart Study. Am Heart J. 2019 Feb. 207:66–75.

Descargas

Publicado

2025-11-22

Número

Sección

Artículo Original

Cómo citar

Interpretación del ECG como herramienta diagnostica en la electrofisiología cardiaca. (2025). RICSA, 2(3), 174-181. https://doi.org/10.57188/ricsa.2025.026