Physiology of vitamin d and bone metabolism: implications for osteoporosis and rickets

FISIOLOGÍA DE LA VITAMINA D Y EL METABOLISMO ÓSEO: IMPLICANCIAS EN OSTEOPOROSIS Y RAQUITISMO

Authors

DOI:

https://doi.org/10.57188/ricsa.2025.039

Keywords:

Vitamin D; Bone and Bones; Osteoporosis; Rickets; Vitamin D Deficiency; Public Health (Fuente: DeCS-BIREME)

Abstract

Vitamin D is important for the endocrine regulation of mineral metabolism and bone integrity. Its synthesis in the skin from ultraviolet B radiation, together with its conversion in the liver and kidneys, allows the formation of 1,25-dihydroxyvitamin D, which regulates intestinal absorption of calcium and phosphorus, modulates the release of parathyroid hormone (PTH), and participates in bone remodeling. Vitamin D metabolism is influenced by factors such as FGF23 and Klotho, which interact to maintain mineral homeostasis in the body. Vitamin D deficiencies manifest clinically as rickets in children and osteomalacia in adults, while in adulthood it can lead to osteoporosis, characterized by bone loss and increased risk of fractures. Currently, vitamin D deficiency remains a major public health problem, affecting millions of people worldwide, including a significant percentage of the population in Peru. This review addresses the physiological mechanisms involved in bone metabolism and the clinical implications for diagnosis and treatment. It concludes that, despite advances in understanding the physiology of vitamin D, there are important áreas that require further research to comprehensively address the treatment and prevention of these bone diseases.

Downloads

Download data is not yet available.

References

1. Li Y, Zhao P, Jiang B, et al. Modulation of the vitamin D/vitamin D receptor system in osteoporosis pathogenesis: insights and therapeutic approaches. J Orthop Surg Res. 2023;18:860. doi:10.1186/s13018-023-04320-4.

2. Portales-Castillo I, Simic P. PTH, FGF-23, Klotho and vitamin D as regulators of calcium and phosphorus: genetics, epigenetics and beyond. Front Endocrinol (Lausanne). 2022;13:992666. doi:10.3389/fendo.2022.992666.

3. Pons-Belda OD, Alonso-Álvarez MA, González-Rodríguez JD, Mantecón-Fernández L, Santos-Rodríguez F. Mineral metabolism in children: interrelation between vitamin D and FGF23. Int J Mol Sci. 2023;24:6661. doi:10.3390/ijms24066661.

4. Haffner D, Leifheit-Nestler M, Grund A, Schnabel D. Rickets guidance: part I—diagnostic work-up. Pediatr Nephrol. 2022;37:2013-2036. doi:10.1007/s00467-021-05328-w.

5. Asiri S, AlBader N, Alfutaisi A, et al. Vitamin D and bone health: from physiological function to clinical aspects. Nutr Metab (Lond). 2025;22:10. doi:10.1186/s12986-025-01011-1.

6. Tallon E, Macedo JP, Faria A, Tallon JM, Pinho MJ, Guerra F, et al. Can vitamin D levels influence bone metabolism and osseointegration of dental implants? An umbrella review. Healthcare (Basel). 2024;12:1867. doi:10.3390/healthcare12181867.

7. Kong SH, Jang HN, Kim JH, Kim SW, Shin CS. Effect of vitamin D supplementation on risk of fractures and falls according to dosage and interval: a meta-analysis. Endocrinol Metab (Seoul). 2022;37:344-358. doi:10.3803/EnM.2021.1374.

8. Chakhtoura M, Bacha DS, Gharios C, et al. Vitamin D supplementation and fractures in adults: a systematic umbrella review of meta-analyses of controlled trials. J Clin Endocrinol Metab. 2022;107(3):882-898. doi:10.1210/clinem/dgab742.

9. Biasucci, G., Pezzini, A., & Caiaffa, M. F. (2024). Rickets types and treatment with vitamin D and analogues. Nutrients, 16(3), 416. https://doi.org/10.3390/nu16030416

10. Voulgaridou, G., Voulgaridou, A., Papadopoulou, S., & Voulgaridou, I. (2023). Vitamin D and calcium in osteoporosis, and the role of bone turnover markers: A narrative review of recent data from RCTs. Diseases, 11(1), 29. https://doi.org/10.3390/diseases11010029

11. Tonny, M., Ahmed, S., & Chowdhury, A. (2025). Management of rickets: The new horizons for the pediatrician. Journal of Health, Population and Nutrition, 44(1), 15. https://doi.org/10.1186/s41043-025-00885-4

12. Wimalawansa, S. J. (2024). Physiology of Vitamin D—Focusing on Disease Prevention. Nutrients, 16(11), 1666. https://doi.org/10.3390/nu16111666

13. Association of vitamins with bone mineral density and osteoporosis measured by dual-energy x-ray absorptiometry: a cross-sectional study. (2024). Frontiers in Nutrition. https://pmc.ncbi.nlm.nih.gov/articles/PMC10792842/

14. Nutrition and Osteoporosis Prevention and Treatment. (2024). Biomedical Research and Therapy. https://home.biomedpress.org/index.php/BMRAT/article/view/598

15. Uçar, N., & Holick, M. F. (2025). Illuminating the Connection: Cutaneous Vitamin D3 Synthesis and Its Role in Skin Cancer Prevention. Nutrients, 17(3), 386. https://doi.org/10.3390/nu17030386

16. Li, Q., Chan, H. Vitamina D y trastornos de la piel: de la investigación molecular a las innovaciones clínicas. Mol Med 31 , 259 (2025). https://doi.org/10.1186/s10020-025-01311-5

17. Voltan, G., Cannito, M., Ferrarese, M., Ceccato, F., & Camozzi, V. (2023). Vitamin D: An Overview of Gene Regulation, Ranging from Metabolism to Genomic Effects. Genes, 14(9), 1691. https://doi.org/10.3390/genes14091691

18. Bikle D. D. (2021). Ligand-Independent Actions of the Vitamin D Receptor: More Questions Than Answers. JBMR plus, 5(12), e10578. https://doi.org/10.1002/jbm4.10578

19. Babić Leko, M., Pleić, N., Gunjača, I., & Zemunik, T. (2021). Environmental Factors That Affect Parathyroid Hormone and Calcitonin Levels. International journal of molecular sciences, 23(1), 44.

20. Vitamin D and Calcium—An Overview, Review of the relationship between vitamin D and Ca (Burns‑Whitmore B, 2024) — Revisión sobre la función de vitamina D en absorción de Ca, transporte, relación con fósforo y implicaciones hormonales.

https://www.mdpi.com/2674-0311/3/4/40

21. A parathyroid hormone/salt‑inducible kinase signalling axis controls renal vitamin D activation and organismal calcium homeostasis (Yoon SH et al., 2023) — Estudio molecular que muestra cómo el PTH regula la activación renal de vitamina D mediante la vía SIK, manteniendo la homeostasis del calcio.

Link: https://www.jci.org/articles/view/163627

22. Roth DE, Abrams SA, Aloia J, Bergeron G, Bourassa MW, Brown KH, et al. Global prevalence and disease burden of vitamin D deficiency: a roadmap for action in low- and middle-income countries. Lancet Diabetes Endocrinol. 2018;6(11):927-945.

Downloads

Published

2026-01-26

Issue

Section

Artículo de Revisión

How to Cite

Physiology of vitamin d and bone metabolism: implications for osteoporosis and rickets: FISIOLOGÍA DE LA VITAMINA D Y EL METABOLISMO ÓSEO: IMPLICANCIAS EN OSTEOPOROSIS Y RAQUITISMO. (2026). RICSA, 2(4), 272-279. https://doi.org/10.57188/ricsa.2025.039