Machine Learning para la Clasificación y Análisis de los Índices de Biomasa y su relación con el Cambio Climático, Desierto de Atacama

Autores/as

DOI:

https://doi.org/10.57188/manglar.2024.010

Resumen

En este trabajo usamos Machine Learning (Randon Forest) como herramienta para clasificar la biomasa y calcular los índices de vegetación buscando identificar las características de la cobertura vegetal en la cabecera del desierto Atacama. Se busca establecer la correlación entre los índices de vegetación y la precipitación, a fin de conocer su confiabilidad sobre la climatología en esta región. Fue importante el análisis geoespacial basado en Google Earth Engine (GEE) y el procesamiento de imágenes Landsat 5 ETM y Landsat 8 OLI/TIRS, para el período 1985 - 2022, lo que permitió caracterizar el cambio climático. El NDVI, SAVI, GVI y RVI han sido probados y validados en sistemas áridos. El NDVI responde positivamente a la precipitación en temporada húmeda y en forma débil en la temporada de lluvias invernales. Se confirma que el NDVI alto corresponde al verano, después de una sequía prolongada. Hacia los años 2020 y 2022, se registra un aumento de cobertura vegetal en lugares de mayor temperatura, evidenciando cambio climático y reflejado en los índices de biomasa.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data, 5(1), 170191. https://doi.org/10.1038/sdata.2017.191

Aboutalebi, M., Torres-Rua, A. F., McKee, M., Kustas, W., Nieto, H., & Coopmans, C. (2018). Behavior of vegetation/soil indices in shaded and sunlit pixels and evaluation of different shadow compensation methods using UAV high-resolution imagery over vineyards. Proceedings of Spie the International Society for Optical Engineering, 10664, 6. https://doi.org/10.1117/12.2305883

Alves, K. M. A. da S., D’avila, M. C. P., Nóbrega, R. S., & Albarran, D. O. (2019). Spatial and temporal variability of vegetation cover in the moxotó watershed, Pernambuco, Brasil. Diálogo Andino, 58, 139–150. https://doi.org/10.4067/S0719-26812019000100139

Alvino, F. C. G., Aleman, C. C., Filgueiras, R., Althoff, D., & da Cunha, F. F. (2020). VEGETATION INDICES FOR IRRIGATED CORN MONITORING. Engenharia Agrícola, 40(3), 322–333. https://doi.org/10.1590/1809-4430-eng.agric.v40n3p322-333/2020

Ariza, A., & Ramirez, H. M. (2014). Modelo Batimetrico derivado de imagenes Landsat ETM+ en zonas de arrecifes tropicales. Revista Cartográfica, (90), 43+.

Bagherzadeh, A., Hoseini, A. V., & Totmaj, L. H. (2020). The effects of climate change on normalized difference vegetation index (NDVI) in the Northeast of Iran. Modeling Earth Systems and Environment, 6(2), 671–683. https://doi.org/10.1007/s40808-020-00724-x

Bawden, R. (2017). Global change and its consequences for the world’s arid lands. In Climate Variability Impacts on Land Use and Livelihoods in Drylands (pp. 59–71). Springer International Publishing. https://doi.org/10.1007/978-3-319-56681-8_3

Benabdelouahab, T., Balaghi, R., Hadria, R., Lionboui, H., Minet, J., & Tychon, B. (2015). Monitoring surface water content using visible and short-wave infrared SPOT-5 data of wheat plots in irrigated semi-arid regions. International Journal of Remote Sensing, 36(15), 4018–4036. https://doi.org/10.1080/01431161.2015.1072650

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324/METRICS

Carlson, T. N., & Traci Arthur, S. (2000). The impact of land use — land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective. Global and Planetary Change, 25(1–2), 49–65. https://doi.org/10.1016/S0921-8181(00)00021-7

Chucuya, S., Vera, A., Pino-Vargas, E., Steenken, A., Mahlknecht, J., & Montalván, I. (2022). Hydrogeochemical Characterization and Identification of Factors Influencing Groundwater Quality in Coastal Aquifers, Case: La Yarada, Tacna, Peru. International Journal of Environmental Research and Public Health, 19(5), 2815. https://doi.org/10.3390/ijerph19052815

Condori-Tintaya, F., Pino-Vargas, E., & Tacora-Villegas, P. (2022). Pérdida de suelos por erosión hídrica en laderas semiáridas de la subcuenca Cairani-Camilaca, Perú. Idesia, 40(2), 7–15. https://doi.org/10.4067/S0718-34292022000200007

da Silva Alves, K. M. A., D’avila, M. C. P., Nóbrega, R. S., & Albarran, D. O. (2019). Variabilidad espacial y temporal de la cobertura vegetal de los años 1984 a 2011 en la cuenca hidrográfica del río Moxotó, Pernambuco, Brasil. Diálogo Andino, 58, 139–150. https://doi.org/10.4067/S0719-26812019000100139

Garreaud, R. D., Molina, A., & Farias, M. (2010). Andean uplift, ocean cooling and Atacama hyperaridity: A climate modeling perspective. Earth and Planetary Science Letters, 292(1–2), 39–50. https://doi.org/10.1016/j.epsl.2010.01.017

Garreaud, R., Vuille, M., & Clement, A. C. (2003). The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 194(1–3), 5–22. https://doi.org/10.1016/S0031-0182(03)00269-4

Gaur, M. K., & Squires, V. R. (2017a). Climate variability impacts on land use and livelihoods in drylands. In Climate Variability Impacts on Land Use and Livelihoods in Drylands. Springer International Publishing. https://doi.org/10.1007/978-3-319-56681-8

Gaur, M. K., & Squires, V. R. (2017b). Geographic extent and characteristics of the world’s arid zones and their peoples. In Climate Variability Impacts on Land Use and Livelihoods in Drylands. Springer International Publishing. https://doi.org/10.1007/978-3-319-56681-8_1

Gomez-Tunque, K. R., Ingol-Blanco, E., Mejia-Marcacuzco, A., Chávarri-Velarde, E., & Pino-Vargas, E. (2023). Deep Neural Networks for ENSO Prediction in the Niño 3.4 and Niño 1+2 Regions. World Environmental and Water Resources Congress 2023, 307–316. https://doi.org/10.1061/9780784484852.030

Gupta, R. K. (1992). NOAA/AVHRR vegetation indices and agriculture-meteorology processes. Advances in Space Research, 12(7), 87–90. https://doi.org/10.1016/0273-1177(92)90201-8

Hashim, B. M., Sultan, M. A., Attyia, M. N., Al Maliki, A. A., & Al-Ansari, N. (2019). Change detection and impact of climate changes to Iraqi southern marshes using Landsat 2 MSS, Landsat 8 OLI and Sentinel 2 MSI data and GIS applications. Applied Sciences (Switzerland), 9(10). https://doi.org/10.3390/app9102016

Tin Kam Ho (1995). Random decision forests. Proceedings of 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, doi: 10.1109/ICDAR.1995.598994.

Houston, J., & Hartley, A. J. (2003). The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. International Journal of Climatology, 23(12), 1453–1464. https://doi.org/10.1002/joc.938

Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X

Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., & Ferreira, L. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101

Kakarla, S. C., Zhu, Z., Ampatzidis, Y., Fountas, S., Ehsani, R., & Pardalos, P. (2022). Editorial: Artificial Intelligence Applications in Specialty Crops. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.866724

Kauth, R. and Thomas, G. (1976). The Tasselled Cap-A Descripción gráfica del desarrollo espectral-temporal de los cultivos agrícolas según lo visto por Landsat. Simposio LARS 1976 de Procesamiento Mecánico de Datos de Detección Remota, West Lafayette, IN: Purdue University, 4B41-4B51.

Kawabata, A., Ichii, K., & Yamaguchi, Y. (2001). Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. International Journal of Remote Sensing, 22(7), 1377–1382. https://doi.org/10.1080/01431160119381

Kua, J., Loke, S. W., Arora, C., Fernando, N., & Ranaweera, C. (2021). Internet of Things in Space: A Review of Opportunities and Challenges from Satellite-Aided Computing to Digitally-Enhanced Space Living. Sensors, 21(23), 8117. https://doi.org/10.3390/s21238117

Machaca-Pillaca, R., Pino-Vargas, E., Ramos-Fernández, L., Quille-Mamani, J., & Torres-Rua, A. (2022). Estimación de la evapotranspiración con fines de riego en tiempo real de un olivar a partir de imágenes de un drone en zonas áridas, caso La Yarada, Tacna, Perú. Idesia, 40(2), 55–65. https://doi.org/10.4067/S0718-34292022000200055

Malanson, G. P., & Alftine, K. J. (2016). Ecological Impacts of Climate Change. In Biological and Environmental Hazards, Risks, and Disasters (397–426). https://doi.org/10.1016/B978-0-12-394847-2.00022-X

Martinez, Alex de la Iglesia, and S. M. Labib. 2023. Demystifying Normalized Difference Vegetation Index (NDVI) for Greenness Exposure Assessments and Policy Interventions in Urban Greening. Environmental Research 220(115155). doi: 10.1016/j.envres.2022.115155.

Munir, S., Seminar, K. B., Sudradjat, Sukoco, H., & Buono, A. (2022). The Use of Random Forest Regression for Estimating Leaf Nitrogen Content of Oil Palm Based on Sentinel 1-A Imagery. Information, 14(1), 10. https://doi.org/10.3390/info14010010

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., & Thépaut, J.-N. (2021). ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9), 4349–4383. https://doi.org/10.5194/essd-13-4349-2021

Nieto, H., Kustas, W. P., Torres-Rúa, A., Alfieri, J. G., Gao, F., Anderson, M. C., White, W. A., Song, L., Alsina, M. del M., Prueger, J. H., McKee, M., Elarab, M., & McKee, L. G. (2019). Evaluation of TSEB turbulent fluxes using different methods for the retrieval of soil and canopy component temperatures from UAV thermal and multispectral imagery. Irrigation Science, 37(3), 389–406. https://doi.org/10.1007/s00271-018-0585-9

Pearson, R. L. and Miller, L. D. (1972). Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie, Pawnee National Grassland, Colorado. 8th International Symposium on Remote Sensing of Environment, 1357–1381.

Pino-Vargas, & Ascencios-Templo, D. (2021). La implementación de veda como una herramienta para controlar la degradación del acuífero costero La Yarada, Tacna, Perú. Diálogo Andino, 66, 489–496. https://doi.org/10.4067/S0719-26812021000300489

Pino-Vargas, E., Chávarri-Velarde, E., Ingol-Blanco, E., Mejía, F., Cruz, A., & Vera, A. (2022). Impacts of Climate Change and Variability on Precipitation and Maximum Flows in Devil’s Creek, Tacna, Peru. Hydrology, 9(1), 10. https://doi.org/10.3390/hydrology9010010

Pino-Vargas, E., Espinoza-Molina, J., Chávarri-Velarde, E., Quille-Mamani, J., & Ingol-Blanco, E. (2023). Impacts of Groundwater Management Policies in the Caplina Aquifer, Atacama Desert. Water, 15(14), 2610. https://doi.org/10.3390/w15142610

Pino-Vargas, E. M., & Ascencios, D. R. (2022). Sostenibilidad del cultivo de olivo bajo un enfoque climatológico en una región árida, cabecera del desierto de Atacama. Ciencia y Tecnología Agropecuaria, 23(3). https://doi.org/10.21930/rcta.vol23_num3_art:2652

Pino-Vargas, E. M., & Huayna, G. (2022). Spatial and temporal evolution of olive cultivation due to pest attack, using remote sensing and satellite image processing. Scientia Agropecuaria, 13(2), 149–157. https://doi.org/10.17268/sci.agropecu.2022.013

Pino-Vargas, Taya-Acosta, E., Ingol-Blanco, E., & Torres-Rúa, A. (2022). Deep Machine Learning for Forecasting Daily Potential Evapotranspiration in Arid Regions, Case: Atacama Desert Header. Agriculture, 12(12), 1971. https://doi.org/10.3390/AGRICULTURE12121971

Pino, E. (2019). El acuífero costero La Yarada, después de 100 años de explotación como sustento de una agricultura en zonas áridas: una revisión histórica. Idesia, 37(3), 39–45. https://doi.org/10.4067/S0718-34292019000300039

Pino, E. (2021). Conflictos por el uso del agua en una región árida: caso Tacna, Perú. Diálogo Andino, 65, 405–415. https://doi.org/10.4067/S0719-26812021000200405

Pino, E., & Chávarri, E. (2022). Evidencias de cambio climático en la región hiperárida de la Costa sur de Perú, cabecera del Desierto de Atacama. Tecnología y Ciencias Del Agua, 13(1), 1–34. https://doi.org/10.24850/j-tyca-2022-01-08

Pino, E., Chávarri V., E., & Ramos F., L. (2018). Governability and governance crisis its implications in the inadequate use of groundwater, case coastal aquifer of La Yarada, Tacna, Perú. Idesia, 36(3), 77–85. https://doi.org/10.4067/S0718-34292018005001301

Pino, E., Montalván, I., Vera, A., & Ramos, L. (2019). La conductancia estomática y su relación con la temperatura foliar y humedad del suelo en el cultivo del olivo (Olea europaea L.), en periodo de maduración de frutos, en zonas áridas.La Yarada, Tacna, Perú. Idesia, 37(4), 55–64. https://doi.org/10.4067/S0718-34292019000400055

Pino, E., Ramos, L., Mejía, J., Chávarri, E., & Ascensios, D. (2020). Medidas de mitigación para el acuífero costero La Yarada, un sistema sobreexplotado en zonas áridas. Idesia, 38(3), 21–31. https://doi.org/10.4067/S0718-34292020000300021

Pocco, V., Chucuya, S., Huayna, G., Ingol-Blanco, E., & Pino-Vargas, E. (2023). A Multi-Criteria Decision-Making Technique Using Remote Sensors to Evaluate the Potential of Groundwater in the Arid Zone Basin of the Atacama Desert. Water, 15(7), 1344. https://doi.org/10.3390/w15071344

Richards, David F., Adam M. Milewski, Steffan Becker, Yonesha Donaldson, Lea J. Davidson, Fabian J. Zowam, Jay Mrazek, and Michael Durham (2023). Evaluation and Analysis of Remote Sensing-Based Approach for Salt Marsh Monitoring. Remote Sensing 16(1):2. doi: 10.3390/rs16010002.

Ritter, B., Wennrich, V., Medialdea, A., Brill, D., King, G., Schneiderwind, S., Niemann, K., Fernández-Galego, E., Diederich, J., Rolf, C., Bao, R., Melles, M., & Dunai, T. J. (2019). Climatic fluctuations in the hyperarid core of the Atacama Desert during the past 215 ka. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-41743-8

Rouse, J. W., Hass, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third ERTS Symposium; NASA: Washington, DC, USA, 1, 309–317

Sidahmed, A. E. (2017). Recent trends in drylands and future scope for advancement. In Climate Variability Impacts on Land Use and Livelihoods in Drylands. Springer International Publishing. https://doi.org/10.1007/978-3-319-56681-8_2

Singh, R. K., Kumar, P., Kumar, M., Tyagi, K., & Jain, H. (2022). Artificial Machine Learning–Based Classification of Land Cover and Crop Types Using Sentinel‐2A Imagery. In Sustainable Agriculture Systems and Technologies (326–336). Wiley. https://doi.org/10.1002/9781119808565.ch16

Sripada, R. P., Heiniger, R. W., White, J. G., & Weisz, R. (2005). Aerial color infrared photography for determining late-season nitrogen requirements in corn. Agronomy Journal, 97(5), 1443–1451. https://doi.org/10.2134/agronj2004.0314

Stein, B. A., Staudt, A., Cross, M. S., Dubois, N. S., Enquist, C., Griffis, R., Hansen, L. J., Hellmann, J. J., Lawler, J. J., Nelson, E. J., & Pairis, A. (2013). Preparing for and managing change: climate adaptation for biodiversity and ecosystems. Frontiers in Ecology and the Environment, 11(9), 502–510. https://doi.org/10.1890/120277

Vera, A., Pino-Vargas, E., Verma, M. P., Chucuya, S., Chávarri, E., Canales, M., Torres-Martínez, J. A., Mora, A., & Mahlknecht, J. (2021). Hydrodynamics, Hydrochemistry, and Stable Isotope Geochemistry to Assess Temporal Behavior of Seawater Intrusion in the La Yarada Aquifer in the Vicinity of Atacama Desert, Tacna, Peru. Water, 13(22), 3161. https://doi.org/10.3390/w13223161

Vergni, L., & Todisco, F. (2023). A Random Forest Machine Learning Approach for the Identification and Quantification of Erosive Events. Water, 15(12), 2225. https://doi.org/10.3390/w15122225

Wang, Y. J., & Qin, D. H. (2017). Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. In Advances in Climate Change Research, 8(4), 268–278. https://doi.org/10.1016/j.accre.2017.08.004

Wardropper, C. B., & Rissman, A. R. (2019). Adaptations to extreme storm events by conservation organizations. Climatic Change, 152(1), 85–101. https://doi.org/10.1007/s10584-018-2342-8

West, J. M., Courtney, C. A., Hamilton, A. T., Parker, B. A., Julius, S. H., Hoffman, J., Koltes, K. H., & MacGowan, P. (2017). Climate-Smart Design for Ecosystem Management: A Test Application for Coral Reefs. Environmental Management, 59(1), 102–117. https://doi.org/10.1007/s00267-016-0774-3

Wiemken, T. L., & Kelley, R. R. (2020). Machine Learning in Epidemiology and Health Outcomes Research. Annual Review of Public Health, 41(1), 21–36. https://doi.org/10.1146/annurev-publhealth-040119-094437

Xiang, Yunfan, Xiangyu Tian, Yue Xu, Xiaokun Guan, and Zhengchao Chen (2023). EGMT-CD: Edge-Guided Multimodal Transformers Change Detection from Satellite and Aerial Images. Remote Sensing 16(1):86. doi: 10.3390/rs16010086

Yang, Shunfu, Yuluan Zhao, Die Yang, and Anjun Lan. 2024. Analysis of Vegetation NDVI Changes and Driving Factors in the Karst Concentration Distribution Area of Asia. Forests 15(3):398. doi: 10.3390/f15030398

Zhang, B. G. (2000). Asymptotic behavior of solutions of certain difference equations. Applied Mathematics Letters, 13(1), 13–18. https://doi.org/10.1016/S0893-9659(99)00138-X

Zhang, He, Yuan, Liu, Zhou, & Huang. (2019). Machine Learning-Based Spectral Library for Crop Classification and Status Monitoring. Agronomy, 9(9), 496. https://doi.org/10.3390/agronomy9090496

Descargas

Archivos adicionales

Publicado

04/02/2024

Número

Sección

ARTÍCULO ORIGINAL

Cómo citar

Gómez, S., Pino-Vargas, E., Huayna, G., Espinoza-Molina, J., Acosta-Caipa, K., & Cabrera-Olivera, F. (2024). Machine Learning para la Clasificación y Análisis de los Índices de Biomasa y su relación con el Cambio Climático, Desierto de Atacama. Manglar, 21(1), 95-106. https://doi.org/10.57188/manglar.2024.010