Micro y nanoencapsulación de aceites esenciales con actividad antimicrobiana y su aplicación en la conservación de alimentos: Una revisión sistemática

Autores/as

  • Laumer Tocto-Yajahuanca Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional Autónoma Altoandina de Tarma. Ciudad Universitaria, Tarma, Perú. https://orcid.org/0000-0001-7973-8320
  • Lesly Edith Yata-Franco Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional Autónoma Altoandina de Tarma. Ciudad Universitaria, Tarma, Perú. https://orcid.org/0000-0002-8633-3097
  • Rafael Julián Malpartida-Yapias Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional Autónoma Altoandina de Tarma. Ciudad Universitaria, Tarma, Perú. https://orcid.org/0000-0002-2222-4879

DOI:

https://doi.org/10.57188/manglar.2024.058

Palabras clave:

secado por aspersión, encapsulación, aceites volátiles, antimicrobiano, alimentos

Resumen

Debido a su actividad antimicrobiana, los aceites esenciales (AE) están siendo utilizados en la conservación de alimentos, sin embargo, su aplicación se ve afectada por su volatilidad y sensibilidad a factores ambientales. La aplicación de técnicas como la microencapsulación y nanoencapsulación han demostrado ser capaces de superar estas limitaciones. Por ello, el objetivo de esta revisión es analizar de manera sistemática los avances en la microencapsulación y nanoencapsulación de aceites esenciales con actividad antimicrobiana para la conservación de alimentos. La presente revisión se desarrolló bajo la metodología para revisiones sistemáticas PRISMA. Mediante las palabras microencapsulation, nanoencapsulation, essential oil, antimicrobial en las bases de datos de Science Direct y Scopus, se identificaron 756 artículos, de los cuales 33 fueron seleccionados según los criterios de inclusión y exclusión. Los estudios in vitro e in situ evidencian que la micro y nanoencapsulación mejora significativamente la actividad antimicrobiana de los AE. Su aplicación en la conservación de productos cárnicos, frutas, semillas, legumbres y cereales ha demostrado ser efectiva, inhibiendo bacterias patógenas y mohos, logrando ser una alternativa prometedora y segura en la conservación de los alimentos. 

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Afrokh, M., El Mehrach, K., Chatoui, K., Ait Bihi, M., Sadki, H., Zarrouk, A., Tabyaoui, M., & Tahrouch, S. (2024). Quality criteria, chemical composition and antimicrobial activity of the essential oil of Mentha suaveolens Ehrh. Heliyon, 10(7), e28125. https://doi.org/10.1016/J.HELIYON.2024.E28125

Alabrahim, O. A. A., & Azzazy, H. M. E. (2023). Antimicrobial Activities of Pistacia lentiscus Essential Oils Nanoencapsulated into Hydroxypropyl-beta-cyclodextrins. ACS Omega. https://doi.org/10.1021/acsomega.3c07413

Al-Mijalli, S. H., El Hachlafi, N., Abdallah, E. M., Jeddi, M., Assaggaf, H., Qasem, A., Alnasser, S. M., Attar, A., Naem, M. A., Lee, L. H., Bouyahya, A., & Mrabti, H. N. (2023). Exploring the antibacterial mechanisms of chemically characterized essential oils from leaves and buds of Syzygium aromaticum (L.) Merr. et Perry against Staphylococcus aureus and Pseudomonas aeruginosa. Industrial Crops and Products, 205, 117561. https://doi.org/10.1016/J.INDCROP.2023.117561

Amor, G., Sabbah, M., Caputo, L., Idbella, M., De Feo, V., Porta, R., Fechtali, T., & Mauriello, G. (2021). Basil essential oil: Composition, antimicrobial properties, and microencapsulation to produce active chitosan films for food packaging. Foods, 10(1), 121. https://doi.org/10.3390/foods10010121

Antonioli, G., Fontanella, G., Echeverrigaray, S., Longaray Delamare, A. P., Fernandes Pauletti, G., & Barcellos, T. (2020). Poly(lactic acid) nanocapsules containing lemongrass essential oil for postharvest decay control: In vitro and in vivo evaluation against phytopathogenic fungi. Food Chemistry, 326, 126997. https://doi.org/10.1016/j.foodchem.2020.126997

Cecilia Prieto, M., Matías Camacho, N., Dell Inocenti, F., Mignolli, F., Lucini, E., Palma, S., Bima, P., Rubén Grosso, N., & Mariana Asensio, C. (2023). Microencapsulation of Thymus vulgaris and Tagetes minuta essential oils: Volatile release behavior, antibacterial activity and effect on potato yield. Journal of the Saudi Society of Agricultural Sciences, 22(3), 195–204. https://doi.org/10.1016/j.jssas.2022.10.003

Chen, K., Zhang, M., & Deng, D. (2024). The synergistic antimicrobial effects and mechanism of cinnamon essential oil and high voltage electrostatic field and their application in minced pork. Food Control, 163, 110475. https://doi.org/10.1016/J.FOODCONT.2024.110475

de Melo, A. M., Barbi, R. C. T., Almeida, F. L. C., de Souza, W. F. C., Cavalcante, A. M. de M., de Souza, H. J. B., Botrel, D. A., Borges, S. V., Costa, R. G., Quirino, M. R., & de Sousa, S. (2022). Effect of Microencapsulation on Chemical Composition and Antimicrobial, Antioxidant and Cytotoxic Properties of Lemongrass (Cymbopogon flexuosus) Essential Oil. Food Technology and Biotechnology, 60(3), 386–395. https://doi.org/10.17113/ftb.60.03.22.7470

Deepika, Chaudhari, A. K., Singh, A., Das, S., & Dubey, N. K. (2021). Nanoencapsulated Petroselinum crispum essential oil: Characterization and practical efficacy against fungal and aflatoxin contamination of stored chia seeds. Food Bioscience, 42, 101117. https://doi.org/10.1016/j.fbio.2021.101117

Ebrahimi, R., Fathi, M., & Ghoddusi, H. B. (2023). Nanoencapsulation of oregano essential oil using cellulose nanocrystals extracted from hazelnut shell to enhance shelf life of fruits: Case study: Pears. International Journal of Biological Macromolecules, 242, 124704. https://doi.org/10.1016/j.ijbiomac.2023.124704

Faraj, A. M., & Nouri, M. (2024). Development of a mucilage coating including nanoencapsulated essential oils for extending shelf life of button mushrooms (Agaricus bisporus). Food Packaging and Shelf Life, 41, 101232. https://doi.org/10.1016/j.fpsl.2023.101232

Goli, S. A. H., Keramat, S., Soleimanian-Zad, S., & Ghasemi Baghabrishami, R. (2024). Antioxidant and antimicrobial efficacy of microencapsulated mustard essential oil against Escherichia coli and Salmonella Enteritidis in mayonnaise. International Journal of Food Microbiology, 410. https://doi.org/10.1016/j.ijfoodmicro.2023.110484

Gottardo, F. M., Biduski, B., Santos, L. F. dos, Santos, J. S. dos, Rodrigues, L. B., & Santos, L. R. dos. (2022). Microencapsulated oregano and cinnamon essential oils as a natural alternative to reduce Listeria monocytogenes in Italian salami. Food Bioscience, 50, 102146. https://doi.org/10.1016/j.fbio.2022.102146

Haseli, A., Pourahmad, R., Eshaghi, M. R., Rajaei, P., & Akbari-Adergani, B. (2023). Application of nanoencapsulated Mofarrah (Nepeta crispa) essential oil as a natural preservative in yogurt drink (doogh). LWT, 186, 115256. https://doi.org/10.1016/j.lwt.2023.115256

Ji, J., Allahdad, Z., Sarmast, E., Salmieri, S., & Lacroix, M. (2022). Combined effects of microencapsulated essential oils and irradiation from gamma and X-ray sources on microbiological and physicochemical properties of dry fermented sausages during storage. LWT, 159, 113180. https://doi.org/10.1016/j.lwt.2022.113180

Kalaskar, M., Gavit, A., Prabhu, S., Gagrani, M., Ugale, V., Khadse, S., Ayyanar, M., Surana, S., Tatiya, A., & Gurav, S. (2024). Chemical composition, antioxidant, antimicrobial, and wound healing effects of Trachyspermum roxburghianum (DC.) H. Wolff essential oil: An in vivo and in silico approach. Journal of Ethnopharmacology, 327, 118055. https://doi.org/10.1016/J.JEP.2024.118055

Karimifar, P., Saei-Dehkordi, S. S., & Izadi, Z. (2022). Antibacterial, antioxidative and sensory properties of Ziziphora clinopodioides–Rosmarinus officinalis essential oil nanoencapsulated using sodium alginate in raw lamb burger patties. Food Bioscience, 47, 101698. https://doi.org/10.1016/j.fbio.2022.101698

Kazlauskaite, J. A., Matulyte, I., Marksa, M., & Bernatoniene, J. (2023). Nutmeg Essential Oil, Red Clover, and Liquorice Extracts Microencapsulation Method Selection for the Release of Active Compounds from Gel Tablets of Different Bases. Pharmaceutics 2023, Vol. 15, Page 949, 15(3), 949. https://doi.org/10.3390/PHARMACEUTICS15030949

Kean, S., Trevanich, S., & Jittanit, W. (2022). Cinnamon essential oil microcapsules made using various methods: physical properties and antimicrobial ability. Journal of the ASABE, 65(1), 169–178. https://doi.org/10.13031/ja.14796

Khatibi, S. A., Ehsani, A., Nemati, M., & Javadi, A. (2021). Microencapsulation of Zataria multiflora Boiss. essential oil by complex coacervation using gelatin and gum arabic: Characterization, release profile, antimicrobial and antioxidant activities. Journal of Food Processing and Preservation, 45(10), e15823. https://doi.org/10.1111/jfpp.15823

Koc, T. B., & Colakdalcı, S. (2022). Improving the Antimicrobial and Antioxidant Activity of Clove (Syzigium aromaticum L.) Essential Oil by Microencapsulation. Journal of Essential Oil-Bearing Plants, 25(6), 1169–1184. https://doi.org/10.1080/0972060X.2022.2158045

Kujur, A., Kumar, A., Yadav, A., & Prakash, B. (2020). Antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated Pelargonium graveolens L. essential oil and its mode of action. LWT, 130, 109619. https://doi.org/10.1016/j.lwt.2020.109619

Laala, G. E., Irshad, G., Naz, F., & Hafiz, A. A. (2023). Microencapsulation of Eucalyptus globulus essential oil anti-fungal sachet against blue mold on peaches. Journal of Plant Protection Research, 63(4), 428–439. https://doi.org/10.24425/jppr.2023.147826

Li, Y., Geng, Y., Shi, D., Li, R., Tang, J., & Lu, S. (2023). Impact of Coreopsis tinctoria Nutt. Essential oil microcapsules on the formation of biogenic amines and quality of smoked horsemeat sausage during ripening. Meat Science, 195, 109020. https://doi.org/10.1016/j.meatsci.2022.109020

Lim, D. Y., Lee, J.-S., & Lee, H. G. (2023). Nano-encapsulation of a combination of clove oil and thymol and their application in fresh-cut apples and raw minced beef. Food Control, 148, 109683. https://doi.org/10.1016/j.foodcont.2023.109683

Locali-Pereira, A. R., Lopes, N. A., Menis-Henrique, M. E. C., Janzantti, N. S., & Nicoletti, V. R. (2020). Modulation of volatile release and antimicrobial properties of pink pepper essential oil by microencapsulation in single- and double-layer structured matrices. International Journal of Food Microbiology, 335. https://doi.org/10.1016/j.ijfoodmicro.2020.108890

Lotfy, T. M. R., Shawir, S. M. S., & Badawy, M. E. I. (2023). The impacts of chitosan-essential oil nanoemulsions on the microbial diversity and chemical composition of refrigerated minced meat. International Journal of Biological Macromolecules, 239, 124237. https://doi.org/10.1016/j.ijbiomac.2023.124237

Lv, H., Huo, S., Zhao, L., Zhang, H., Liu, Y., Liu, S., Tani, A., & Wang, R. (2023). Preparation and application of cinnamon-Litsea cubeba compound essential oil microcapsules for peanut kernel postharvest storage. Food Chemistry, 415, 135734. https://doi.org/10.1016/j.foodchem.2023.135734

Mahdi, A. A., Al-Maqtari, Q. A., Mohammed, J. K., Al-Ansi, W., Cui, H., & Lin, L. (2021). Enhancement of antioxidant activity, antifungal activity, and oxidation stability of Citrus reticulata essential oil nanocapsules by clove and cinnamon essential oils. Food Bioscience, 43, 101226. https://doi.org/10.1016/j.fbio.2021.101226

Mahmud, J., Muranyi, P., Shankar, S., Sarmast, E., Salmieri, S., & Lacroix, M. (2024). Physiological and antimicrobial properties of a novel nanoemulsion formulation containing mixed surfactant and essential oils: Optimization modeling by response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 686, 133405. https://doi.org/10.1016/J.COLSURFA.2024.133405

Najjaa, H., Chekki, R., Elfalleh, W., Tlili, H., Jaballah, S., & Bouzouita, N. (2020). Freeze-dried, oven-dried, and microencapsulation of essential oil from Allium sativum as potential preservative agents of minced meat. Food Science and Nutrition, 8(4), 1995–2003. https://doi.org/10.1002/fsn3.1487

Napiórkowska, A., Szpicer, A., Górska-Horczyczak, E., & Kurek, M. A. (2024). Microencapsulation of Essential Oils Using Faba Bean Protein and Chia Seed Polysaccharides via Complex Coacervation Method. Molecules, 29(9), 2019. https://doi.org/10.3390/molecules29092019

Ojeda-Piedra, S. A., Zambrano-Zaragoza, M. L., González-Reza, R. M., García-Betanzos, C. I., Real-Sandoval, S. A., & Quintanar-Guerrero, D. (2022). Nano-Encapsulated Essential Oils as a Preservation Strategy for Meat and Meat Products Storage. Molecules, 27, 8187. https://doi.org/10.3390/MOLECULES27238187

Ozdemir, N., Bayrak, A., Tat, T., Yanık, Z. N., Altay, F., & Halkman, A. K. (2021). Fabrication and characterization of basil essential oil microcapsule-enriched mayonnaise and its antimicrobial properties against Escherichia coli and Salmonella Typhimurium. Food Chemistry, 359, 129940. https://doi.org/10.1016/j.foodchem.2021.129940

Peixoto, E. C., Fonseca, L. M., Zavareze, E. da R., & Gandra, E. A. (2023). Antimicrobial active packaging for meat using thyme essential oil (Thymus vulgaris) encapsulated on zein ultrafine fibers membranes. Biocatalysis and Agricultural Biotechnology, 51, 102778. https://doi.org/10.1016/j.bcab.2023.102778

Quispe, A. M., Hinojosa-Ticona, Y., Miranda, H. A., & Sedano, C. A. (2021). Scientific writing series: Systematic review. In Revista del Cuerpo Medico Hospital Nacional Almanzor Aguinaga Asenjo (Vol. 14, Issue 1, pp. 94–99). Medical Body of the Almanzor Aguinaga Asenjo National Hospital. https://doi.org/10.35434/rcmhnaaa.2021.141.906

Roshan, A. B., Venkatesh, H. N., Dubey, N. K., & Mohana, D. C. (2022). Chitosan-based nanoencapsulation of Toddalia asiatica (L.) Lam. essential oil to enhance antifungal and aflatoxin B1 inhibitory activities for safe storage of maize. International Journal of Biological Macromolecules, 204, 476–484. https://doi.org/10.1016/j.ijbiomac.2022.02.026

Sánchez-Osorno, D. M., López-Jaramillo, M. C., Caicedo Paz, A. V., Villa, A. L., Peresin, M. S., & Martínez-Galán, J. P. (2023). Recent Advances in the Microencapsulation of Essential Oils, Lipids, and Compound Lipids through Spray Drying: A Review. Pharmaceutics 2023, Vol. 15, Page 1490, 15(5), 1490. https://doi.org/10.3390/PHARMACEUTICS15051490

Sindhu, M., Rajkumar, V., Annapoorani, C. A., Gunasekaran, C., & Kannan, M. (2023). Nanoencapsulation of garlic essential oil using chitosan nanopolymer and its antifungal and anti-aflatoxin B1 efficacy in vitro and in situ. International Journal of Biological Macromolecules, 243, 125160. https://doi.org/10.1016/j.ijbiomac.2023.125160

Singh, A., Bhardwaj, U., Kaur, R., & Vyas, P. (2023). Chemical Composition, Micorencapsulation and Comparative Antimicrobial Studies of Unencapsulated and Encapsulated Carrot Seed Essention Oil. Journal of Essential Oil-Bearing Plants, 26(1), 232–243. https://doi.org/10.1080/0972060X.2023.2182712

Sridhar, K., Hamon, P., Ossemond, J., Bouhallab, S., Croguennec, T., Renard, D., & Lechevalier, V. (2024). Plant and animal protein mixed systems as wall material for microencapsulation of Mānuka essential Oil: Characterization and in vitro release kinetics. Food Research International, 114419. https://doi.org/10.1016/J.FOODRES.2024.114419

Taheri, P., Soweizy, M., & Tarighi, S. (2023). Application of essential oils to control some important fungi and bacteria pathogenic on cereals. Journal of Natural Pesticide Research, 6, 100052. https://doi.org/10.1016/J.NAPERE.2023.100052

Tu, Q. B., Wang, P. Y., Sheng, S., Xu, Y., Wang, J. Z., You, S., Zhu, A. H., Wang, J., & Wu, F. A. (2020). Microencapsulation and Antimicrobial Activity of Plant Essential Oil Against Ralstonia solanacearum. Waste and Biomass Valorization, 11(10), 5273–5282. https://doi.org/10.1007/s12649-020-00987-6

Upadhyay, N., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., & Dubey, N. K. (2021). Assessment of nanoencapsulated Cananga odorata essential oil in chitosan nanopolymer as a green approach to boost the antifungal, antioxidant and in situ efficacy. International Journal of Biological Macromolecules, 171, 480–490. https://doi.org/10.1016/j.ijbiomac.2021.01.024

Van, C. K., Nguyen, P. T. N., Nguyen, T. T. T., & Bach, L. G. (2024). Microencapsulation of Citrus latifolia peel essential oil by spray-drying using maltodextrin: Characterization, antimicrobial activities, and release profile. LWT, 197, 115825. https://doi.org/10.1016/j.lwt.2024.115825

Vuković, N. L., Vukić, M., Branković, J., Petrović, V., Galovičova, L., Čmikova, N., & Kačaniova, M. (2024). The antimicrobial and antibiofilm potential of the Piper nigrum L. essential oil: in vitro, in situ, and in silico study. Industrial Crops and Products, 209, 118075. https://doi.org/10.1016/J.INDCROP.2024.118075

Wang, Y., Du, Y.-T., Xue, W.-Y., Wang, L., Li, R., Jiang, Z.-T., Tang, S.-H., & Tan, J. (2023). Enhanced preservation effects of clove (Syzygium aromaticum) essential oil on the processing of Chinese bacon (preserved meat products) by beta cyclodextrin metal organic frameworks (β-CD-MOFs). Meat Science, 195, 108998. https://doi.org/10.1016/j.meatsci.2022.108998

Yang, K., Liu, A., Hu, A., Li, J., Zen, Z., Liu, Y., Tang, S., & Li, C. (2021). Preparation and characterization of cinnamon essential oil nanocapsules and comparison of volatile components and antibacterial ability of cinnamon essential oil before and after encapsulation. Food Control, 123, 107783. https://doi.org/10.1016/j.foodcont.2020.107783

Zhang, L., Zhang, M., Ju, R., Bhandari, B., & Liu, K. (2023). Antibacterial mechanisms of star anise essential oil microcapsules encapsulated by rice protein-depolymerized pectin electrostatic complexation and its application in crab meatballs. International Journal of Food Microbiology, 384, 109963. https://doi.org/10.1016/j.ijfoodmicro.2022.109963

Zhang, Y., Yang, S., Hardie, W. J., Li, X., Xiao, M., Huang, T., Xiong, T., & Xie, M. (2023). Microcapsules of a cinnamon, peppermint, and lemon essential oil mix by spray drying: Preparation, characterization and antibacterial functions. Food Hydrocolloids, 145, 109103. https://doi.org/10.1016/j.foodhyd.2023.109103

Zhao, Y., Wang, Y., Zhang, Z., & Li, H. (2023). Advances in Controllable Release Essential Oil Microcapsules and Their Promising Applications. Molecules 2023, Vol. 28, Page 4979, 28(13), 4979. https://doi.org/10.3390/MOLECULES28134979

Descargas

Publicado

12/20/2024

Número

Sección

ARTÍCULO ORIGINAL

Cómo citar

Tocto-Yajahuanca, L., Yata-Franco, L. E., & Malpartida-Yapias, R. J. (2024). Micro y nanoencapsulación de aceites esenciales con actividad antimicrobiana y su aplicación en la conservación de alimentos: Una revisión sistemática. Manglar, 21(4), 535-543. https://doi.org/10.57188/manglar.2024.058

Artículos similares

1-10 de 228

También puede Iniciar una búsqueda de similitud avanzada para este artículo.