Encapsulation of communities of microbial by polymers in order to improve the production of crops of coffee
DOI:
https://doi.org/10.57188/manglar.2025.051Keywords:
Alginate of sodium, chitosan, encapsulation, microbiome.Abstract
The encapsulation of organisms in polymers is imporatant in order to preserve and release cells viable, protecting them from stress environmental in order to ensure the nutrition of the plant and health of the soil and thus incresease the yields in the crops of the coffee. In the present study, different concentrations of alginate and chitosan were prepared to encapsulate and a consortium of microorganisms until reaching the optimal formulation, whose characterization was carried out by Fourier Transform Infrared and Scanning Electron Microscopy. The capacity of absorption and release of microorganims in liquid aqueous, in soil saline, and in a soil of coffee was evaluated and the survival of the microbiome encapsulated during one month. The results show that the polymer usted is stable at different values of pH and temperatures, highlighting ar pH 5 al 30 ºC, whose release prolonged of microbiome was 26% (6.5 10 6 CFU mL-1) in an agriculltural soil. The study of kinetic of the microbiome encapsulated in soil of coffee clearly evidences a gradual release of the microbiome up to 72 hours and its survival of the microbiome encapsulated after keeping one month at room temperatura was reduced 8%.
Downloads
References
Ahmad, A., Riaz, S., & Tamiru, D. (2024). Alginate's ability to prevent metabolic illnesses, the degradation of the gut's protective layer, and alginate-based encapsulation methods. Food Sciencie and Nutrition, 12, 8692-8714. https://doi.org/10.1002/fsn3.4455
Betancur, M., Echeverri, C. E., Londoño, M. E., & Moreno-Castellanos, N. (2025). Crosslinked Alginate-Chitosan Based Scaffold Functionalized with VEGF-A for the Beta-Pancreatic Cells Support. Revista EIA, 22(43), 1-24. https://doi.org/10.24050/reia.v22i43.1838
Beula, J., Balamurugan, A., Renuka, P., & Periyasamy, S. (2024). Chitosan-encapsulated microbial biofertilizer: A breakthrough for enhanced tomato crop productivity. Revista internacional de macromoléculas biológicas, 260, 129463, 1-10. https://doi.org/10.1016/j.ijbiomac.2024.129462
Cáceres, L. M., Chamorro, E., & Dagnino, E. L. (2025). Microencapsulación de aceite esencial de pomelo en matrices de alginato-lignina y alginato-silice y modelado de su liberación controlada. Revista Cubana de Química, 37, 26-39. https://doi.org/10.33414/ajea.5.732.2020
Chamard, J., Faticov, M., Blanchet, F. G., Chagnon, P. L., & Laforest-Lapointe, I. (2024). Interplay of biotic and abiotic factors shapes tree seedling growth and root-associated microbial communities. Communications biology, 7, 360, 1-13. https://doi.org/10.1038/s42003-024-06042-7
Chandia, N.P., Matsuhiro, B., & Vásquez, A. E. (2001). Alginic acid in Leesonia trabeculate: characterization by formic acid hydrolysis and FTIR spectroscopy. Carbohydrate polymer, 46, 81-87. https://doi.org/10.1016/S0144-8617(00)00286-1
Chávez-Falcón, M. S., Buitrago-Arias, C., Avila-Reyes, S. V., Solorza-Feria, J., Arenas-Ocampo, M. L., Camacho-Díaz, B. H., & Jiménez-Aparicio, A. R. (2022). Kinetics and Mechanisms of Saccharomyces boulardii Release from Optimized Whey Protein–Agavin–Alginate Beads under Simulated Gastrointestinal Conditions. Bioengineering, 9, 460, 1-20. https://doi.org/10.3390/bioengineering9090460
Cong, X., Qingfeng, B., Wang, W., Hou, J., & Jiang, Z. (2022). Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. Journal of Controlled Release, 349, 184-205. https://doi.org/10.1016/j.jconrel.2022.06.061
Cruz-Cárdenas, C. I., Zelaya, L.X., Sandoval, G., Villalobos, S., Rojas, E., Fernando, I., & Ruíz, S. (2021). Utilización de microorganismos para una agricultura sostenible en México: consideraciones y retos. Revista Mexicana de Ciencias Agrícolas, 12(5), 899-913. https://doi.org/10.29312/remexca.v12i5.2905
Da Silva Simões, C.V., Stamford, T. C. M., Berger, L. R. R., Araújo, A. S., Da Costa Medeiros, J. A., De Britto Lira Nogueira, M. C., Pintado, M. M. E., Salgado, S. M., & de Lima, M. A. B. (2025). Edible Alginate–Fungal Chitosan Coatings as Carriers for Lacticaseibacillus casei LC03 and Their Impact on Quality Parameters of Strawberries During Cold Storage. Foods, 14(2), 203. https://doi.org/10.3390/foods14020203
Duraimurugan, P., Chandrika, K. S. V. P., Bharathi, E. & Neethu Ro, D. (2024). Encapsulation of Bacillus thuringiensis using sodium alginate and chitosan coacervates for insect-pest management. Carbohydrate Polymer Technologies and Applications, 8, 100540, 1-10. https://doi.org/10.1016/j.carpta.2024.100540
El Hariri, M., Lasorsa, A., Sebakhy, K. O., Picchioni, F., & Van der Wel, P. C. A. (2022). Solid-state NMR spectroscopy insights for resolving different water pools in alginate hydrogels. Food Hydrocolloids, 127, 107500, 1-14. https://doi.org/10.1016/j.foodhyd.2022.107500
Gómez L. F., Londoño M. E., & Echeverri C. E. (2018). Caracterización de matrices de polivinil alcohol-alginato-quitosano-aloe vera. Revista Ingeniería Biomédica, 12(23), 25-30. https://doi.org/10.24050/19099762.n23.2018.806
Klein, M. P., Hackenhaar, C. R., Lorenzoni, A. S. G., Rodríguez, R. C., Costa, T. M. H., Ninow, J. L., & Hertz, P. F. (2016). Chitosan crosslinked with genipin as support matrix for application in food process: Support charac-terization and β-D-galactosidase immobilization. Carbohydrate Polymers, 137, 184-190. https://doi.org/10.1016/J.CARBPOL.2015.10.069
Lewicka, K., Szymanek, I., Rogacz, D., Wrzalik, M., Łagiewka, J., Nowik-Zaj, A., Zawierucha, I., Coseri, S., Puiu, L., Falfushynska, H., & Rychter, P. (2024). Current Trends of Polymer Materials Application in Agriculture. Sustainability. 16, 8439. https://doi.org/10.3390/su16198439
Matei, E., Predescu, A. M., Râpă, M., Țurcanu, A. A., Mateș, I., Constantín, N., & Predescu, C. (2022). Natural Polymers and Their Nanocomposites Used for Environmental Applications. Nanomaterials, 12, 1707. https://doi.org/10.3390/nano12101707
Mollah, M. Z. I., Faruque, M. R. I., Bradley, D. A., Khndaker, M. U., & Al Assaf, S. (2023). FTIR and rheology study of alginate simples: Effect of radiation. Radiation Physics and Chemistry, 202, 110500.
Nair, M. S., Tomar, M., Punia, S., Kukula-Koch, W., & Kumar, M. (2020). Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. International Journal of Biological Macromolecules, 164, 304–320. https://doi.org/10.1016/j.ijbiomac.2020.07.083
Netherway, T., Bengtsson, J., Buegger, F., Fritscher, J., Oja, J., Pritsch, K., Hildebrand, F., Krab, E., & Bahram, M. (2024). Pervasive associations between dark septate endophytic fungi with tree root and soil microbiomes across Europe. Nature Communications, 15, 159. https://doi.org/10.1038/s41467-023-44172-4
Philippot, L., Chenu, C., Kappler, A., Rillig, M. C., & Fierer, N. (2024). The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 22, 226–239. https://doi.org/10.1038/s41579-023-00980-5
Riseh, R. S., Skorik, Y. A., Thakur, V. K., Pour, M. M., Tamanadar, E., & Noghabi, S. S. (2021). Encapsulation of Plant Biocontrol Bacteria with Alginate as a Main Polymer Material. International Journal of Molecular Science, 22(20), 11165. https://doi.org/10.3390/IJMS222011165
Rodríguez, N., Valderrama, A., Alarcón, H., & López, Al. (2010). Preparación de partículas de quitosano reticuladas con tripolifosfato y modificadas con polietilenglicol. Revista de la Sociedad Química del Perú, 76(4), 336-354.
Sharif, N., Murtaza, I., Shahnaz, G., Saeed, A., Ishtiaq, A., Tabassum, S., Rahdar, A., Fathi-karkan, S., & Pandey, S. (2025). Precision nanophytomedicine: Alginate-chitosan nanogels encapsulating Olea ferruginea ethyl acetate fraction for enhanced cardiovascular protection. International Journal of Biological Macromolecules, 318, 144656, 1-22. https://doi.org/10.1016/j.ijbiomac.2025.144656
Tavares, L., Esparza Flores, E. E., Rodríguez, R. C., Hertz, P. F., & Noreña, C. P. Z. (2020). Effect of deacetylation degree of chitosan on rheological properties and physical chemical characteristics of genipin-crosslinked chitosan beads. Food Hydrocolloids, 106, 105876. https://doi.org/10.1016/J. FOODHYD.2020.105876
Thị-Thanh-Trúc, P., Hải-Ngˆun, D., Ureña, M., Oliete, B., Denimal, E., Dupont, E., Beney, L., & Karbowiak, T. (2025). Sodium Alginate as a promising encapsulating material for extremely-oxygen sensitive probiotics. Food Hydrocolloids, 160, 110857. https://doi.org/10.1016/j.foodhyd.2024.110857
Trabelsi, I., Bejar, W., Ayadi, D., Chouayekh, H., Kammoun, R., Bejar, S., & Salah, R. (2013). Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice. International Journal of Biological Macromolecules, 61, 36-42. https://doi.org/10.1016/j.ijbiomac.2013.06.035
Ureña, M., Carullo, D., Thanh-Trúc, P., Fournier, P., Farris, S. Lagorce, A., & Karbowiak, T. (2024). Effect of polymer structure on the functional properties of alginate for film or coating applications. Food Hydrocolloids, 149, 10955. https://doi.org/10.1016/j.foodhyd.2023.109557
Zhao, S., & Wang, J. (2025). Preparation of composites based on herbicide-degrading bacteria and their effects on soil bacterial communities. The Microbe, 6, 100234. https://doi.org/10.1016/j.microb.2025.100234
Zveushe, K., Nkoh, J., Resco de Dios, V., Terence, T., Suanon, F., Zhang, H., Chen, W., Lin, L., Zhang, W., Sesu, F., Li, J., Han, Y., & Dong, F. (2025). Enhancing hexavalent chromium stable reduction via sodium alginate encapsulation of newly isolated fungal and bacterial consortia. Journal of Hazardous Materials, 486, 136994. https://doi.org/10.1016/j.jhazmat.2024.136994
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Roberto Carlos Cosme De la Cruz, Ruth Noemí López Montañez, Reyna Esther Rea Zenozain, Luis Antonio Llanco Albornoz, Melissa Rabanal Atalaya

This work is licensed under a Creative Commons Attribution 4.0 International License.

Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license







