Primer reporte de la obtención de mutantes del pez Cebra (Danio rerio) por pérdida de pigmentación de la piel por la edición génica del gen de la tirosinasa con el sistema Crispr/Cas9

Autores

  • Carlos Scotto Laboratorio de Mejora Genética y Reproducción Animal de la Escuela de Biología, Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal. El Agustino. Lima. Perú.

DOI:

https://doi.org/10.57188/

Palavras-chave:

Crispr Cas, edición génica, pez Cebra, pigmentación, tirosinasa

Resumo

Actualmente el sistema Crispr/Cas9 permite la edición del genoma en forma eficiente para inducir específicamente mutaciones deseadas. En este estudio, se describe la inducción de mutaciones del gen de la tirosinasa (Tyr) en el pez Cebra para probar la efectividad de la microinyección. Una secuencia de un ARN guía (gRNAs) de 20 nucleótidos y dos primers flanqueadores (forward y reverse) fueron diseñados para el gen de la tirosinasa y microinyectados en los embriones post fecundados y mostraron una pérdida gradual de pigmentación a nivel corporal desde las primeras etapas embrionarias hasta la adultez. Este estudio reporta por primera en el Perú que el sistema Crispr/Cas9 puede realizarse en el pez Cebra como animal modelo de entrenamiento para modificar el gen Tyr cuyos fenotipos despigmentados fueron fácilmente distinguibles evidenciándose su éxito en la edición génica. A futuro serviría como modelo bioexperimental para producirse mutaciones de interés de otros genes de otras especies acuícolas de alto valor ornamental y/o comercial para el Perú.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Aulia, A., Hutapea, R., Setya Abdima, P., Ali Emawan, A., & Edbert, I. (2023). CRISPR: On How it’ll Change the Future. Engineering, Mathematics and Computer Science, 5(2), 73-77. https://doi.org/10.21512/emacsjournal.v5i2.9975

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2

Base de datos del NCBI. https://www.ncbi.nlm.nih.gov/

Basolo, A. (2006). Genetic Linkage and Color Polymorphism in the Southern Platyfish (Xiphophorus maculatus): A Model System for Studies of Color Pattern Evolution. Zebrafish, 3(1), 65-83. https://doi.org/10.1089/zeb.2006.3.65

Bell, C. C., Magor, G. W., Gillinder, K. R., & Perkins, A. C. (2014). A high-throughput screening strategy for detecting CRISPR-Cas9 induced mutations using next-generation sequencing. BMC Genomics, 15, 1002. https://doi.org/10.1186/1471-2164-15-1002

Bian, C., Li, R., Wen, Z., Ge, W., & Shi, Q. (2021). Phylogenetic analysis of core melanin synthesis genes provides novel insights into the molecular basis of albinism in fish. Frontiers in Genetics, 12, 707228. https://doi.org/10.3389/fgene.2021.707228

Boonanuntanasarn, S., Yoshizaki, G., Iwai, K., & Takeuchi, T. (2004). Molecular cloning, gene expression in albino mutants and gene knockdown studies of tyrosinase mRNA in rainbow trout. Pigment Cell Research, 17(4), 413-21. https://doi.org/10.1111/j.1600-0749.2004.00166.x

Brinkman, E., Chen, T., de Haas, M., Holland, H., Akhtar, W., & Steensel, B. (2018). Kinetics and fidelity of the repair of Cas9-Induced Double-Strand DNA breaks. Molecular Cell, 70, 801–813. https://doi.org/10.1016/j

Braasch, I.; Schartl, M., & Volff, J. (2007). Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evolutionary Biology, 7(74), 14-18. https://doi.org/10.1186/1471-2148-7-74

Camp, E., Badhwar, P., Mann, G., & Lardelli, M. (2003). Expression analysis of a tyrosinase promoter sequence in zebrafish. Pigment Cell Research, 16, 117–126. https://doi.org/10.1034/j.1600-0749.2003.00002.x

Chang, N., Sun, C., Gao, L. et al. (2013). Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Research, 23, 465–472. https://doi.org/10.1038/cr.2013.45

Changqing, Z., Ziheng, R., & Zhiyuan, G. (2023). Generation of Albino Phenotype in Ornamental Fish by CRISPR/Cas9-Mediated Genome Editing of slc45a2 Gene. Marine Biotechnology, 25, 1-10. https://doi.org/10.1007/s10126-023-10204-9

Chaudhary, D. K., Singh, S. K., Gohil, N., & Bhattacharjee, G. (2020). Recent progress of CRISPR-Cas9 in zebra fish in Genome engineering via CRISPR/cas9 system. In: Genome Engineering via CRISPR-Cas9 System. Chapter 19, Editorial: Elsevier Inc., 251-261. https://doi.org/10.1016/B978-0-12-818140-9.00019-2

Dooley, CM, Schwarz, H., Mueller, K.P., Mongera, A., Konantz, M.; Neuhauss, S., Nusslein-Volhard, C., & Geisler, R. (2012). Slc45a2 and V-ATPase are regulators of melanosomal pH homeostasis in zebrafish, providing a mechanism for human pigment evolution and disease. Pigment Cell Melanoma Research, 26, 205–217. https://doi.org/10.1111/pcmr.12053

Fan, Y., Zhang, G., Zhao, K., Yuan, X., Fu, W., Liu, J., Liu, W., Peng, L., & Xiao, Y. (2023). Rapidly generating homozygous mutate zebrafish in F0 generation by technical integration of CRISPR/Cas9 and gynogenesis. Reproduction and Breeding, 3(2), 45-49. https://doi.org/10.1016/j.repbre.2023.04.001

Food and Agriculture Organization. (2020). FAO Aquaculture Newsletter No. 61. http://www.fao.org/faoterm/collection/aquaculture/en/

Ferdous, Md. A., Islam, S. I., Habib, N., Almohada, M., Allahyani, M., Alsaiari, A. A., & Shafie, A. (2022). CRISPR-Cas Genome Editing Technique for Fish Disease Management: Current Study and Future Perspective. Microorganisms, 10(10), 2012. https://doi.org/10.3390/microorganisms10102012

Fujii, R. (2000). The regulation of motile activity in fish chromatophores. Pigment cell research, 13, 300-319. https://doi.org/10.1034/j.1600-0749.2000.130502.x

Genbank (2023a). Secuencia del ARNm del gen Tyr parcial de Danio rerio para la enzima tirosinasa NM_131013.3. https://www.ncbi.nlm.nih.gov/nuccore/NM_131013

Genbank (2023b). Gen tyr parcial de Danio rerio para la enzima tirosinasa XM_003451484.3. https://www.ncbi.nlm.nih.gov/nucleotide/AJ489318.1?report=genbank&log$=nucltop&blast_rank=58&RID=UXN4KZ8M013

Grainger, S., Lonquich, B., Oon, C. H., Nguyen, N., Willert, K., & Traver, D. (2017). CRISPR guide RNA validation in vitro. Zebrafish 14, 383–386. https://doi.org/10.1089/zeb.2016.1358

Gutási, A., Hammer, S.E., El-Matbouli, M., & Saleh, M. (2023). Review: Recent Applications of Gene Editing in Fish Species and Aquatic Medicine. Animals, 13, 1250. https://doi.org/10.3390/ani13071250

Hallerman, E. (2021). Genome Editing in Cultured Fishes. CABI Agricultura y Biociencia, 2. https://doi.org/10.1186/s43170-021-00066-3

Han, J., Kraft, P., Nan, H., Guo, H., Chen, C., Qureshi, A., Hankinson, E., Hu, F., Duffy, D., Zhao, Z., Martin, N., Montgomery, G., Hayward, N., & Hunter, A. (2008). Genome-Wide Association Study Identifies Novel Alleles Associated with Hair Color and Skin Pigmentation. PLoS Genet, 4(5), 1-11. https://doi.org/10.1371/journal.pgen.1000074

Hisano, Y., Ota, S., & Kawahara, A. (2014). Genome editing using artificial site-specific nucleases in zebrafish. Development, Growth & Differentiation, 56(1):26-33. https://doi.org/10.1111/dgd.12094

Hruscha, A., Krawits, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C., & Schmid, B. (2013). Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development, 140, 4982–4987. https://doi.org/10.1242/dev.099085

Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M. L., Kaini, P., et al. (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas System. PLoS ONE, 8(7), e68708. https://doi.org/10.1371/journal.pone.0068708

Iida, A., Inagaki, H., Suzuki, M., Wakamatsu, Y., & Hori, H. (2004). The tyrosinase gene of the i(b) albino mutant of the medaka Fish carries a transposable element insertion in the promoter. Pigment Cell Research, 17, 158–164. https://doi.org/10.1046/j.1600-0749.2003.00122.x

Inagaki, H., Koga, A., Bessho, Y., & Hori, H. (1998). The tyrosinase gene from medakafish: transgenic expression rescues albino mutation. Pigment Cell Research, 11(5), 283-90. https://doi.org/10.1111/j.1600-0749.1998.tb00737.x

Jao, L. E., Wente, S. R., & Chen, W. (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Sciences USA, 110, 13904–13909. https://doi.org/10.1073/pnas.1308335110

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. A (2012). Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-21. https://doi.org/10.1126/science.1225829

Kelsh, R. N. Genetics and evolution of pigment patterns in fish. (2004). Pigment Cell Research, 17, 326–336. https://doi.org/10.1111/j.1600-0749.2004.00174.x

Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3), 253-310. https://doi.org/10.1002/aja.1002030302

Kroll, F., Powell, G., Ghosh, M., Gestri, G., Antinucci, P., Hearn, T., Tunbak, H., Lim, S., Dennis, H., Fernandez, J., Whitmore, D., Dreosti, E., Wilson, S., Hoffman, E., & Rihel, J. (2021). A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. eLife, 10, e59683. https://doi.org/10.7554/eLife.59683

Krug, J., Perner, B., Albertz, C., Mörl, H., Hopfenmüller, V., Englert, C. (2023) Generation of a transparent killifish line through multiplex CRISPR/Cas9mediated gene inactivation. eLife, 12, e81549. https://doi.org/10.7554/eLife.81549

Ley que establece la moratoria al ingreso y producción de organismos vivos modificados al territorio nacional por un período de 10 años (Ley Nº 29811, 2011, Diciembre 09). Diario Oficial El Peruano, pp. 454601. En: https://www.minam.gob.pe/wp-content/uploads/2017/04/Ley-N%C2%B0-29811.pdf.

Leído 03 de diciembre de 2025.

Ley que modifica la Ley 29811, Ley que establece la moratoria al ingreso y producción de organismos vivos modificados al territorio nacional por un período de 15 años, a fin de establecer la moratoria hasta el 31 de diciembre de 2035 (Ley Nº 31111, 2021, Enero 06). Diario Oficial El Peruano, pp. 4. En: https://bioseguridad.minam.gob.pe/wp-content/uploads/2021/02/Ley-31111.pdf

Liu, J., Gong, L., Chang, C., Liu, C., Peng, J., & Chen, J. (2012). Development of novel visual plus quantitative analysis systems for studying DNA double-strand break repairs in zebrafish. Journal of Genetics and Genomics, 39(9), 489-502. https://doi.org/10.1016/j.jgg.2012.07.009

Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J., & Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology (Reading), 155(Pt 3), 733-740. https://doi.org/ 10.1099/mic.0.023960-0

Moreno-Mateos, M., Vejnar, C., Beaudoin, J. D., et al. (2015). CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nature Methods, 12, 982–988. https://doi.org/10.1038/nmeth.3543

Okoli, A., Blix, T., Myhr, A., Xu, W., & Xu, X. (2022). Sustainable use of CRISPR/Cas in fish aquaculture: the biosafety perspective. Transgenic Research, 31(1), 1-21. https://doi.org/10.1007/s11248-021-00274-7

Page-McCaw, P. S., Chung, S. C., Muto, A., Roeser, T., Staub, W., Finger-Baier, K. C., Korenbrot, J. I., & Baier, H. (2004). Retinal network adaptation to bright light requires tyrosinase. Nature Neuroscience, 7(12), 1329-1336. https://doi.org/10.1038/nn1344

Parichy, D. M. (2006). Evolution of danio pigment pattern development. Heredity (Edinb). 97, 200–210. https://doi.org/10.1038/sj.hdy.6800867

Preeti, S., Sharan, S., & Ramtej, V. (2021). CRISPR-based genome editing of zebrafish. Progress in Molecular Biology and Translational Science, 180, 69-84. https://doi.org/10.1016/bs.pmbts.2021.01.005

Programa Primer-BLAST. https://www.ncbi.nlm.nih.gov/tools/primer-blast/

Programa OligoAnalyzer Tool. https://www.idtdna.com/calc/analyzer

Proyecto de Ley 011125/2024-CR, que busca promover y regular el uso de variedades y razas biotecnológicas en agricultura y ganadería, fomentando investigación, innovación y la sobera-nía genética incluyendo Organismos Vivos Modificados (OVM) y Organismos Genéticamente Editados (OGE). (Proyecto de Ley Nº 011125, 2025, Mayo 13). Congreso de la República.

Puthumana, J., Chandrababu, A., Sarasan, M., et al. (2024). Genetic improvement in edible fish: status, constraints, and prospects on CRISPR-based genome engineering. Biotech, 14, 44. https://doi.org/10.1007/s13205-023-03891-7

Roy, S., Kumar, V., Behera, B. K., Parhi, J., Mohapatra, S., Chakraborty, T., & Das, B. K. (2022). CRISPR/Cas Genome Editing—Can It Become a Game Changer in Future Fisheries Sector? Frontiers in Marine Science, 9, artículo 924475. https://doi.org/10.3389/fmars.2022.924475

Shiraki, T., & Kawakami, K. (2024). Generation of Transgenic Fish Harboring CRISPR/Cas9-Mediated Somatic Mutations Via a tRNA-Based Multiplex sgRNA Expression. Methods in Molecular Biology, 2707, 305-318. https://doi.org/10.1007/978-1-0716-3401-1_20

Sorlien, E., Witucki, M. A., & Ogas, J. (2018). Efficient Production and Identification of CRISPR/Cas9-generated Gene Knockouts in the Model System Danio rerio. Journal of Visualized Experiments, 138, 56969. https://doi.org/10.3791/56969

Sung, Y. H., Kim, J. M., Kim, H. T., Lee, J., Jeon, J., Jin, Y., Choi, J. H., Ban, Y. H., Ha, S. J., Kim, C. H., Lee, H. W., & Kim, J. S. (2014). Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Research, 24, 125–131. https://doi.org/10.1101/gr.163394.113

Ota, S., Hisano, Y., Ikawa, Y., & Kawahara, A. (2014). Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes Cells, 19(7), 555-564. https://doi.org/10.1111/gtc.12154

Tsetskhladze, Z. R., Canfield, V. A., Ang, K. C., Wentzel, S. M., Reid, K. P., Berg, A. S., Johnson, S. L., Kawakami, K., & Cheng, K. C. (2012). Functional assessment of human coding mutations affecting skin pigmentation using zebrafish. PLoS One, 7(10), e47398. https://doi.org/10.1371/journal.pone.0047398

Untergasser. A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3 - new capabilities and interfaces. Nucleic Acids Research, 40(15), e115. https://doi.org/10.1093/nar/gks596

Varshney, G., Sood, R., & Burgess, S. (2015). Understanding and Editing the Zebrafish Genome. Advanced Genetics, 92, 1-52. https://doi.org/10.1016/bs.adgen.2015.09.002

Wang, J., Hou, L., Zhang, R. et al. (2007). The tyrosinase gene family and albinism in fish. Journal of Oceanology and Limnology, 25, 191–198. https://doi.org/10.1007/s00343-007-0191-9

Westerfield, M. (2000). The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish. http://zfin.org/zf_info/zfbook/zfbk.html.

White, R., Sessa, A., Burke, C., Bowman, T., LeBlanc, J., Ceol, C., Bourque, C., Dovey, M., Goessling, W., Burns. C., & Zon, L. (2008). Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell, 2, 183-189. https://doi.org/10.1016/j.stem.2007.11.002

Wu, Y., & Wang, I. (2020). Heat-shock-induced tyrosinase gene ablation with CRISPR in zebrafish. Molecular Genetics and Genomic, 295, 911–922. https://doi.org/10.1007/s00438-020-01681-x

Xu, X., Chen, H., Mandal, B. K., Si, Z., Wang, J., & Wang, C. (2022). Duplicated Tyr disruption using CRISPR/Cas9 reveals melanophore formation in Oujiang color common carp (Cyprinus carpio var. color). Reproduction and Breeding, 2, 37-45. https://doi.org/10.1016/j.repbre.2022.05.001

Yin, L., Maddison, L. Li, M., Kara, N., LaFave, M., Varshney, G., Burgess, S., Patton, J., & Chen, W. (2015). Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNA. Genetics, 200(2), 431–441. https://doi.org/10.1534/genetics.115.176917

Yu, C., Zhang, Y., Yao, S., & Y. Wei. (2014). A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish. PLoS ONE, 9, e98282. https://doi.org/10.1371/journal.pone.0098282

Yu, L., Chen, H., Hu, X., Chen, X., Liu, Z., Wang, J., & Wang, C. (2021). SLC24A5 plays fundamental roles in regulating melanophore development in Cyprinidae fish. Reproduction and Breeding, 1, 167-173. https://doi.org/10.1016/j.repbre.2021.11.001

Yuan S., & Sun Z. (2009). Microinjection of mRNA and morpholino antisense oligonucleotides in zebrafish embryos. Journal of Visualized Experiments, 7(27), 1113. https://doi.org/10.3791/1113

Zebrafish Information Network (ZFIN) (2024). https://zfin.org/ZDB-FISH-1509017721

Zhang, Y., Qin, W., Lu, X., Xu, J., Huang, H., & Bai, H. (2017). Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nature Communications, 8(1), 118. https://doi.org/10.1038/s41467-017-00175-6

Zhang, C., Ren, Z., & Gong, Z. (2023). Generation of Albino Phenotype in Ornamental Fish by CRISPR/Cas9-Mediated Genome Editing of slc45a2 Gene. Mar Biotechnol (NY), 25, 281-290. https://doi.org/10.1007/s10126-023-10204-9

Zhu, B., & Ge, W. (2018). Genome editing in fishes and their applications. General and Comparative Endocrinology, 257, 3-12. https://doi.org/10.1016/j.ygcen.2017.09.011

Publicado

2025-12-16

Edição

Secção

Artículo original

Como Citar

Scotto, C. (2025). Primer reporte de la obtención de mutantes del pez Cebra (Danio rerio) por pérdida de pigmentación de la piel por la edición génica del gen de la tirosinasa con el sistema Crispr/Cas9. Manglar, 22(4), 601-608. https://doi.org/10.57188/