Producción y caracterización de carbones activados a partir de residuos agroindustriales

Autores/as

  • Gerardo Cruz Cerro
  • Carlos Cenepa La Cotera
  • Dorian Aguirre

DOI:

https://doi.org/10.17268/manglar.2013.003

Resumen

Diferentes carbones activados fueron obtenidos de residuos agroindustriales de los departamentos de Piura y Tumbes (Perú): cáscara de la vaina de Theobroma cacao, parte externa e interna de la semilla de Manguifera indica y cáscara de Coffea arabica. Los materiales tamizados a tamaños de 0,5 – 1 mm fueron activados químicamente con ZnCl2 y carbonizados en atmosfera de nitrógeno por 2 horas a 600 °C. Los carbones activados fueron caracterizados como rendimiento (%), análisis elemental (%), área superficial de BET (Brunauer–Emmett–Teller, SBET) en m2/g, área superficial en la región microporasa en m2/g y área superficial en la región mesoporosa en m2/g. Se aplicaron también análisis de microscopia y test de adsorción de azul de metileno. Se obtuvieron carbones con alta área superficial de BET de entre 892 y 1180 m2/g, y predominante área superficial en la región microporosa. Basados en imágenes de microscopia electrónica, los carbones activados presentan una estructura porosa bien desarrollada, con distintos poros de múltiples formas y tamaño. Todas las muestras de carbones activados analizados, presentaron capacidad de remoción de azul de metileno, llegando a remociones de casi el 100 %. Adicionalmente el tipo de interacción entre el azul de metileno y el carbón activado es de naturaleza química al ajustarse los valores de remoción a un modelo de cinética de pseudo-segundo orden.

Citas

Adekola, F. and H. Adegoke. 2005. Adsorption of blue-dye on activated carbons produced from rice husk, coconut shell and coco nut coirpith. Ife Journal of Science, 7(1): 151-157.

Ahmad, F., W. Daud, M. Ahmad, and R. Radzi. 2011. Using cocoa (Theobroma cacao) shellbased activated carbon to remove 4-nitrophenol from aqueous solution: Kinetics and equilibrium studies. Chemical Engineering Journal, 178: 461-467.

Ahmad, F., W. Daud, M. Ahmad, and R. Radzi. 2012. Cocoa (Theobroma cacao) shell-based activated carbon by CO2 activation in remo ving of Cationic dye from aqueous solution: Kinetics and equilibrium studies. Chemical Engineering Research and Design, 90(10):1480-1490.

Ahmad, M, and N. Rahman. 2011. Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon. Chemical Engineering Journal, 1701: 154-161.

Ahmadpour, A., and D. D. Do. 1997. The prepa ration of activated carbon from macadamia nutshell by chemical activation. Carbon, 35 (12): 1723-1732.

Akpen, G., I. Nwaogazie, and T. Leton. 2011. Optimum conditions for the removal of color from waste water by mango seed shell based activated carbon. Indian Journal of Science Technology, 4(8): 890-894.

Bello, O., M. Ahmad and T. Siang. 2011. Utilization of cocoa pod husk for the removal of remazol black B reactive dye from aqueous solutions: kinetic, equilibrium and thermo dynamic studies. Trends in Applied Sciences Research, 6(8): 794-812.

Boudrahem, F., F. Aissani-Benissad, and H. Aït-Amar. 2009. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. Journal of environmental management, 90(10): 3031-3039.

Brunauer, S., P. Emmett, and E. Teller. 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 60, no.2 (1938): 309-319.

Cruz, G., Pirilä, M. Huuhtanen, L. Carrión, E. Alvarenga, and R. L. Keiski. 2012. Production of Activated Carbon from Cocoa (Theobroma cacao) Pod Husk. J Civil Environment Engg, 2(2): 1-6.

Gueu, S., B. Yao, K. Adouby, and G. Ado. 2006. Heavy Metals Removal in Aqueous Solution by Activated Carbons Prepared from Coco nut Shell and Seed Shell of the Palm Tree. Journal of Applied Sciences 6(13): 2789-2793.

Hayashi, J., H. Toshihide, T. Isao, M. Katsuhiko and Fard Nasir A. 2002. Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon 40(13): 2381-2386.

Ho, Y-S., and G. McKay. 1999. Pseudo-second order model for sorption processes. Process Biochemistry 34, no. 5: 451-465.

Jameel, A. and A. Hussain. 2009. Removal of heavy metals from wastewater using activeted rice husk carbon as adsorbent. Indian J Environ Protect 29: 263-265.

Kadirvelu, K., M. Kavipriya, C. Karthika, N. Vennilamani, and S. Pattabhi. 2004. Mercury (II) adsorption by activated carbon made from sago waste. Carbon, 42(4): 745-752.

Kwaghger, A. and J.S. Ibrahim. 2013. Optimization of Conditions for the Preparation of Activated Carbon from Mango Nuts using HCl. American Journal of Engineering Research,2(7): 74-85.

Lua, A. and Q. Jia. 2007. Adsorption of phenol by oil-palm-shell activated carbons. Adsorption, 13(2): 129-137.

Lowell, S., J. Shields, M. Thomas and M. Thommes. 2004. Characterization of porous solids and powders: surface area, pore size and density. Particle Technoligy Series Vol. 16.

Moreno-Castilla, C., F. Carrasco--Marín, M. Lopez-Ramon, and M. Alvarez-Merino. 2001. Chemical and physical activation of olive-mill waste water to produce activated carbons.Carbon, 39(9): 1415-1420.

Oliveira, L., E. Pereira, I. Guimaraes, and K. Sapag. 2009. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. Journal of hazardous materials 165(19): 87-94.

Rahman, I. A., and B. Saad. 2003. Utilization of guava seeds as a source of activated carbon for removal of methylene blue from aqueous solution. Malaysian Journal of Chemistry, 5(1): 8-14.

Ramakrishnan, K. and Ch. Namasivayam. 2009. Development and characteristic of activated carbons from Jatropha husk, an agroindustrial solid waste, by chemical activation methods. Journal Environment Engineering Management, 9: 173-178.

Theivarasu, C., and S. Mylsamy. 2010. Equilibrium and Kinetic adsorption studies of Rhodamine-B from aqueous solutions using cocoa (Theobroma cacao) shell as a new adsorbent. Int J Eng. Sci. Technol, 2: 6284-6292.

Autor para correspondencia: gcruzc@untumbes.edu.pe (Gerardo Cruz Cerro)

Descargas

Publicado

2015-05-11

Cómo citar

Cruz Cerro, G., Cenepa La Cotera, C., & Aguirre, D. (2015). Producción y caracterización de carbones activados a partir de residuos agroindustriales. Manglar, 10(2), 17–25. https://doi.org/10.17268/manglar.2013.003

Número

Sección

ARTÍCULO ORIGINAL