Identificación molecular de bacterias asociadas a la filosfera de plantas de arroz (Oryza sativa L), mediante técnicas de cultivo microbiano

Autores/as

  • Carlos Deza N. Universidad Nacional de Trujillo
  • Dicson Sánchez
  • Jean Silva
  • Ramón García
  • Eric Mialhe

DOI:

https://doi.org/10.17268/manglar.2015.004

Resumen

Las plantas albergan una gran diversidad de microorganismos, como hongos, bacterias, etc., que interactúan con ella y tienen una funcionalidad que va desde la patogenicidad, hasta la protección de la misma. Se ha estudiado parte de esta diversidad microbiana a nivel de la filosfera en plantas de Oryza sativa (L) “arroz”; mediante microbiología molecular se ha caracterizado siete especies bacterianas entre las cuales sobresalieron especies Uncultured, es decir no cultivadas, además de Bacillus amyloliquefafaciens, Enterobacter asburiae, Klebsiella pneumoniae y Pantoea sp., todas ellas con un alto porcentaje de identidad; asimismo, mediante metagenómica dirigida se caracterizó trecientos ochenta y cinco especies bacterianas, de las que sobresalen pertenecen a los generos Bacillus, Rhizobium, Pseudomonas, Mycobacterium, Nocardioides, Clostridium, Methylobacterium y Pantoea. Las faamilias que más destacan son Enterobacteriaceae, Rhizobiaceae, Microbacteriaceae, Bacillaceae, Flavobacteriaceae, Pseudomonadaceae, Nocardiaceae, Mycobacteriaceae, Clostridiaceae y Methylobacteriaceae; no se encontró Burkholderia glumae.

Citas

Abraham J., and S. Silambarasan. 2015. “Plant growth promoting bacteria Enterobacter asburiae JAS5 and Enterobacter cloacae JAS7 in mineralization of endosulfan.” Appl Bio-chem Biotechnol. 175(7):3336-48. doi: 10.1 007/s12010-015-1504-7.

Arjun, J. and K. Harikrishnan. 2011. “Metageno mic analysis of bacterial diversity in the rice rhizosphere soil microbiome.” Biotech nol. Bioinf. Bioeng., 1(3): 361-367.

Bart Cottyn. 2003. Bacteria Associated with Rice Seed Bacteria Associated with Rice Seed from Philippine Farmers’ Fields from Philippine Farmers’ Fields. https://biblio. ugent.be/publication/521724/file/1874748.pdf.

Benitez LB, R.V. Velho, M.P. Lisboa, L.F. Medina, and A. Brandelli. 2010. “Isolation and charac terization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006.” J Microbiol. Dec; 48(6):791-7. doi: 10,1 007/s 12275-010-0164-0. Epub 2011 Jan 9. PubMed PMID: 21221936. Chen, R., I. Barphagha, H. Karki and J. Ham. 2012. “Dissection of quorum-sensing genes in Bur kholderia glumae reveals non-canonical regulation and the new regulatory geneto fM for toxoflavin production.” PLoS ONE 7(12): e52150.

Chi F., P. Yang, F. Han, Y. Jing, and S. Shen. 2010. Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics. May; 10(9):1861-74. doi: 10,1 002/pmic. 200900694.

De Vleesschauwer, D. Djavaheri, M. Bakker, P. A. H. M. & Höfte, M. 2008. “Pseudomonas fluorescens WCS374r-Induced Systemic Resistance in Rice against Magnaporthe oryzae Is Based on Pseudobactin-Mediated Priming for a Salicylic Acid-Repressible Multifaceted Defense Response”. Plant Physiology, 148(4), 1996–2012. http://doi.org/10,1 104/pp.108.127878.

Devescovi, G., J. Bigirimana, G. Degrassi, L. Cabrio, J. LiPuma, J. Kim, I. Hwang and V. Venturi. 2007. Involvement of a quorum-sensing regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice. Applied and Environmental Microbiology, 73(15): 4950–4958.

Egorova M., E. Mazurin and A. N. Ignatov. 2015. “First report of Pantoea ananatis causing grain discolouration and leaf blight of rice in Russia.” New Disease Reports (2015) 32, 21. http://dx.doi.org/10.5197/j.2044-0588.2015.032.021.

Goo, E., Y. Kang, H. Kim and I. Hwang I. 2010. “Proteomic analysis of quorum sensing-de pendent proteins in Burkholderia glumae.” Journal of Proteome Research, 9(6): 3184–3199.

Gallegos J.J., C. Alías Villegas, I.M. Díaz Olivares, R. Gutiérrez Alcántara, N. Madinabeitia Peiró, R.A. Bellogín, and M.R. Espuny. 2014. Caracterización de una metilobacteria ais lada de la superficie del grano de arroz. 10,1 3140/2.1.3698.1767. Sevilla. España.

Hameed A., S. Y. Lin, W. A. Lai, C. C. Young, L. S. Young and Y. T. Hseih. 2015. Pantoea sp. CC-10P1 16S ribosomal RNA gene, partial sequence. https://www.ncbi.nlm.nih.gov/ nuccore/910268732/

Iwase, T., Y. Ogura, K. Ishiwata, T. Hayashi, M. Yoneda, and Y. Mizunoe. 2015. Complete genome sequence of Klebsiella pneumoniae YH43. https://www.ncbi.nlm.nih.gov/ nuccore/AP014950,1.

Karki, H. 2010. Physiological, biochemical and molecular characteristics associated with virulence of Burkholderia glumae: the major causative agent of bacterial panicle blight of rice. Thesis of Master of Science. Depart ment Plant Pathology and Crop Physiology. Faculty of the Louisiana State University and Agricultural and Mechanical College.

Karki, H., B. Shrestha, J. Han, D. Groth, I. Barpha gha, M. Rush, R. Melnason, B. Kim and J. Ham. 2012. Diversities in virulence, antifungal activity, pigmentation and DNA pingerprint among strains of Burkholderia glumae. PLoS ONE 7(9): e45376.

Knief, C., N. Delmotte, S. Chaffron, M. Stark, G. Innerebner, R. Wassmann, and J. A. Vorholt. 2012. “Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice.” The ISME Journal, 6(7), 1378–1390. http://doi.org/10,1 038/ismej.2011.192. Liu

Lau, Y. Y., J. Sulaiman, J. W. Chen, W. F. Yin & K.G. Chan. 2013. Quorum Sensing Activity of Enterobacter asburiae isolated from Lettuce Leaves. Sensors (Basel, Switzerland), 13(10), 14189–14199. http://doi.org/10.3390/ s131014189.

Lee H. B. and J. P. Hong. 2010. First Report of Leaf Blight Caused by Pantoea agglomerans on Rice in Korea. APS Journals, 94, (11). http://dx.doi. org/10,1 094/PDIS-05-10-0374.

Liu Y., H. Wang, X. Sun, H. Yang, Y. Wang, and W. Song. 2011. Study on mechanisms of colonization of nitrogen-fixing PGPB, Kleb siella pneumoniae NG14 on the root surface of rice and the formation of biofilm. Curr Microbiol. Apr; 62(4):1113-22. doi: 10,1 007/s00284-010-9835-7.

McCorrison J., R. Sanka, M. Adams, L. Brinkac, G. Sutton, B. Kreiswirth and L. Chen. 2015. Enterobacter asburiae strain 35734, com-plete genome. https://www.ncbi.nlm.nih. gov/nuccore/CP012162.1.

MG RAST. 2007. Metagenomic Rapid Annota-tions using Subsystems Technology. http://metagenomics.anl.gov/

MO BIO. 2016. PowerSoil® DNA Isolation Kit. Instruction Manual. Mo Bio, Laboratories Inc., Saving You Time For Life https://mobio.com/media/wysiwyg/pdfs/protocols/12888.pdf

Mondal K. K., C. Mani, and J. Singh. 2011. A New Leaf Blight of Rice Caused by Pantoea anana tis in India. APS Journals 95(12) http://dx. doi.org/10,1 094/PDIS-06-11-0533.

Mora I., J. Cabrefiga, and E. Montesinos. 2011. “Antimicrobial peptide genes in Bacillus strains from plant environments.” Int Micro biol. Dec; 14 (4):213-23. PubMed PMID: 22569759.

Munees A. and M. S. Khan. 2008. “Plant growth promoting activities of phosphatesolubilizing Enterobacter asburiae as influenced by fun gicides.” EurAsian Journal of BioSciences. DOI:10.5053/ejobios.2010.4.0,1 1.

Mwashasha R. M., Hunja Murage, Akio Tani, Es ther M. Kahangi, and Huxley Mae Makonde. 2014. “Molecular characterization of bacteria and fungi from rice growing regions in Kenya” International Journal of Biosciences, 5(3): 7-14.

NCBI. 2016. Nucleotide. National Center for Biotechnology Information, U.S. National Library of Medicine. http://www.ncbi.nlm.nih.gov/nuccore/

Okubo T., S. Ikeda, K. Sasaki, K. Ohshima, M. Hattori, T. Sato and K. Minamisawa. 2014. “Phylogeny and functions of bacterial com munities associated with field-grown rice shoots. Microbes Environmental, 29(3): 329-332. Accedido el 2 de junio 2015. http:// www.ncbi.nlm.nih.gov/pubmed/25130883.

Paz and Matsumura, A.T.S (2015). Bacillus amyloliquefaciens as plant inoculant. https://www.ncbi.nlm.nih.gov/nuccore/KP681701.2

Sessitsch A, P. Hardoim, J. Döring, A. Weilharter, A. Krause, T. Woyke, B. Mitter, L. Hauberg-Lotte, F. Friedrich, M. Rahalkar, T. Hurek, A. Sarkar, L. Bodrossy, L. Van Overbeek, D. Brar, JD. Van Elsas and B. Reinhold-Hurek. 2012. “Functional characteristics of an en dophyte community colonizing rice roots as revealed by metagenomic analysis.” APS Journal, 25(1):28–36. Los Banos, Laguna, Philippines.

Shrestha B. K., H. S. Karki, D. E. Groth, N. Jung khun & J. H. Ham. 2016. “Biological Control Activities of Rice-Associated Bacillus sp. Strains against Sheath Blight and Bacterial Panicle Blight of Rice. PLoS ONE, 11(1), e0146764. http://doi.org/10,1 371/journal.pone.0146764.

Wu, L., H. Wu, L. Chen, X. Yu, R. Borriss & X. Gao. 2015. “Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Scientific Reports, 5, 12975. http://doi.org/10,1 038/srep12975.

Xie CH., and A. Yokota. 2006. “Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacte rium isolated from the roots of Oryza sativa” Int J Syst Evol Microbiol. Apr; 56 (Pt 4):889 -93. PubMed PMID: 16585711.

Xiong XQ, HD Liao, JS Ma, XM Liu, LY Zhang, XW Shi, XL Yang, XN Lu, and YH Zhu. 2014. “Iso lation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability. Lett Appl Microbiol. Feb; 58 (2):123 -9. doi: 10,1 111/lam.12163. Epub 2013 Oct 31. PubMed PMID: 24111687.

Descargas

Publicado

2016-11-10

Cómo citar

Deza N., C., Sánchez, D., Silva, J., García, R., & Mialhe, E. (2016). Identificación molecular de bacterias asociadas a la filosfera de plantas de arroz (Oryza sativa L), mediante técnicas de cultivo microbiano. Manglar, 12(1), 25–36. https://doi.org/10.17268/manglar.2015.004

Número

Sección

ARTÍCULO ORIGINAL