Uso de las imágenes hiperespectrales e imágenes digitales en bayas: Anomalías, enfermedades, daños mecánicos, firmeza, madurez y morfometría
DOI:
https://doi.org/10.57188/manglar.2023.010Resumen
Existen distintos tipos de bayas, uno de los más conocidos, nutritivos e importantes es el arándano. El procesamiento moderno de estos frutos garantiza alta calidad, mejor comercialización del producto y una estimación de su vida útil. El objetivo de esta revisión fue proporcionar información científica de las características fisicoquímicas de diferentes bayas empleando tecnología de imágenes hiperespectrales e imágenes digitales. Estas tecnologías presentan tendencias con resultados satisfactorios en variados campos tecnológicos y de investigación. Los hallazgos obtenidos demuestran que, la tecnología de imágenes hiperespectrales y la tecnología de imágenes digitales ha sido de mucho interés en los últimos años, debido a que son tecnologías no destructivas, que permiten tener buenas predicciones en la detección de anomalías en las bayas, considerándolas herramientas robustas, confiables y con alto potencial de uso en la gran industria en la evaluación de la calidad de las bayas haciendo posible la oferta de productos más adecuados para el consumidor. Con el avance de la tecnología se presentan posibilidades de nuevo estudios futuros para obtener modelos más rápidos de procesar y con mayor precisión estadística.
Descargas
Referencias
Afsharnia, F., Mehdizadeh, S., Ghaseminejad, M., & Heidari, M. (2017). The effect of dynamic loading on abrasion of mulberry fruit using digital image analysis. Information Processing in Agriculture, 4(4), 291-299.
Alapont, C., Soriano, S., & Torrejón, J. (2020). Guía para la determinación de vida útil de los alimentos. Generalitat Valenciana (Conselleria de Sanitat Universal i Salut Pública). Valencia: FEDACOVA (Federación Empresarial de Agroalimentación de la Comunidad Valenciana.
Arslan, M., Tahir, H. E., Zareef, M., Shi, J., Rakha, A., Bilal, M., . . . Xiaobo, Z. (2021). Recent trends in quality control, discrimination and authentication of alcoholic beverages using nondestructive instrumental techniques. Trends in Food Science & Technology, 107, 80-113.
Benelli, A., Cevoli, C., & Fabbri, A. (2020). In-field Vis/NIR hyperspectral imaging to measure soluble solids content of wine grape berries during ripening. International Workshop on Metrology for Agriculture and Forestry., 99-103.
Bini, D., Pamela, D., & Jude, H. D. (2022). Evaluating YOLOv5 Deep Learning Models for the Detection of Tomato Berries for Crop Yield Estimation. Frontiers in Artificial Intelligence and Applications, 347, 429 - 436.
Bonomelli, C., Nuñez, F., Bonilla, C., & Artacho, P. (2014). Effect of the soil temperature on root growth of cherry trees [Prunus avium L. cv. Bing/Gisela®6]: A preliminary study in central Chile. Acta Horticulturae, 1020, 175-180.
Chan, C., Nelson, P. R., Hayes, D. J., Zhang, Y.-J., & Hall, B. (2021). Predicting water stress in wild blueberry fields using airborne visible and near infrared imaging spectroscopy. Remote Sensing, 13(8).
Cheshkova, A. (2022). Quantitative assessment of white spot (Ramularia tulasnei) disease severity of strawberry based on hyperspectral imaging. IOP Conference Series: Earth and Environmental Science, 957(1).
Cho, B.-K., Kim, M. S., Baek, I.-S., Kim, D.-Y., Lee, W.-H., Kim, J., . . . Kim, Y.-S. (2013). Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence imagery. Postharvest Biology and Technology, 76, 40-49.
Cho, J.-S., Lim, J. H., Park, K. J., Choi, J. H., & Ok, G. S. (2021). Prediction of pelargonidin-3-glucoside in strawberries according to the postharvest distribution period of two ripening stages using VIS-NIR and SWIR hyperspectral imaging technology. LWT, 141.
Choi, J.-Y., Kim, J., Kim, J., Jeong, S. K., Park, S., & Moon, K.-D. (2021). Hyperspectral imaging technigue for monitoring moisture content of blueberry during the drying process. Korean Journal of Food Preservation, 28(4), 445-455.
Cordoví, F., & Keeling, M. (2018). La utilización de la imagen digital en el proceso pedagógico universitario. Atenas, 2(42), 1682-2749.
Courand, A., Metz, M., Héran, D., Feilhes, C., Prezman, F., Serrano, E., . . . Ryckewaert, M. (2022). Evaluation of a robust regression method (RoBoost-PLSR) to predict biochemical variables for agronomic applications: Case study of grape berry maturity monitoring. Chemometrics and Intelligent Laboratory Systems, 221.
Devassy, B. M., & George, S. (2021). Imaging estimation of strawberry firmness using in this issue: Spectral preprocessing to compensate for packaging film / using neural nets to invert the prosail canopy model hyperspectral imaging: A comparison of regression models. Journal of Spectral Imaging, 10.
Diago, M. P., Fernández-Novales, J., Fernandes, A. M., Melo-Pinto, P., & Tardaguila, J. (2016). Use of Visible and Short-Wave Near-Infrared Hyperspectral Imaging to Fingerprint Anthocyanins in Intact Grape Berries. Journal of Agricultural and Food Chemistry, 64(40), 7658-7666.
Fan, S., Li, C., Huang, W., & Chen, L. (2017). Detection of blueberry internal bruising over time using NIR hyperspectral reflectance imaging with optimum wavelengths. Postharvest Biology and Technology, 134, 55-66.
Fan, S., Li, C., Huang, W., & Chen, L. (2018). Data fusion of two hyperspectral imaging systems with complementary spectral sensing ranges for blueberry bruising detection. Sensors (Switzerland), 18(12).
Fatchurrahman, D., Nosrati, M., Amodio, M. L., Chaudhry, M. M., de Chiara, M. L., Mastrandrea, L., & Colelli, G. (2021). Comparison performance of visible-nir and near-infrared hyperspectral imaging for prediction of nutritional quality of goji berry (Lycium barbarum l.). Foods, 10(7).
Feldmann, M., Hardigan, M., Fámula, R., López, C., Tabb, A., Cole, G., & Knapp, S. (2020). Multi-dimensional machine learning approaches for fruit shape phenotyping in strawberry. GigaScience, 9(5).
Fernandes, A. M., Franco, C., Mendes-Ferreira, A., Mendes-Faia, A., Costa, P. L., & Melo-Pinto, P. (2015). Brix, pH and anthocyanin content determination in whole Port wine grape berries by hyperspectral imaging and neural networks. Computers and Electronics in Agriculture, 115, 88-96.
Fernández-Novales, J., Barrio, I., & Diago, M. P. (2021). Non-invasive monitoring of berry ripening using on-the-go hyperspectral imaging in the vineyard. Agronomy, 11(12).
Fu, L., Okamoto, H., Shibata, Y., Kataoka, T., Cui, Y., & Li, R. (2014). Distinguishing overripe berries of Japanese blue honeysuckle using hyperspectral imaging analysis. Engineering in Agriculture, Environment and Food, 7(1), 22-27.
Gao, Z., Zhao, Y., Hoheisel, G.-A., Khot, L. R., & Zhang, Q. (2021). Blueberry bud freeze damage detection using optical sensors: Identification of spectral features through hyperspectral imagery. Journal of Berry Research, 11(4), 631-646.
Gao, Z., Zhao, Y., Khot, L. R., Hoheisel, G.-A., & Zhang, Q. (2019). Optical sensing for early spring freeze related blueberry bud damage detection: Hyperspectral imaging for salient spectral wavelengths identification. Computers and Electronics in Agriculture, 167.
Gomes, V. M., Fernandes, A. M., Faia, A., & Melo-Pinto, P. (2017). Comparison of different approaches for the prediction of sugar content in new vintages of whole Port wine grape berries using hyperspectral imaging. Computers and Electronics in Agriculture, 140, 244-254.
Gomes, V., Gomes, V., Reis, M. S., Mendes-Ferreira, A., & Melo-Pinto, P. (2021). Determination of sugar, ph, and anthocyanin contents in port wine grape berries through hyperspectral imaging: An extensive comparison of linear and non-linear predictive methods. Applied Sciences (Switzerland), 11(21).
Gomes, V., Mendes-Ferreira, A., & Melo-Pinto, P. (2021). Application of hyperspectral imaging and deep learning for robust prediction of sugar and ph levels in wine grape berries. Sensors, 21(10).
Hu, M.-H., Dong, Q.-L., & Liu, B.-L. (2016). Classification and characterization of blueberry mechanical damage with time evolution using reflectance, transmittance and interactance imaging spectroscopy. Computers and Electronics in Agriculture, 122, 19-28.
Hu, M.-H., Zhao, Y., & Zhai, G.-T. (2018). Active learning algorithm can establish classifier of blueberry damage with very small training dataset using hyperspectral transmittance data. Chemometrics and Intelligent Laboratory Systems, 172, 52-57.
Huang, L., Yang, L., Meng, L., Wang, J., Li, S., Fu, X., . . . Wu, D. (2018). Potential of visible and near-infrared hyperspectral imaging for detection of Diaphania pyloalis larvae and damage on mulberry leaves. Sensors (Switzerland), 18(7).
Huang, Y., Wang, D., Liu, Y., Zhou, H., & Sun, Y. (2020). Measurement of early disease blueberries based on vis/nir hyperspectral imaging system. Sensors (Switzerland), 20(20), 1-11.
Hussain, A., Pu, H., & Sun, D.-W. (2019). Measurements of lycopene contents in fruit: A review of recent developments in conventional and novel techniques. Critical Reviews in Food Science and Nutrition, 59(5), 758–769.
Iglesias, R. (2018). Visualización de imágenes multi- e hiperespectrales usando operadores de agregación. Trabajo Fin de Máster, Universidad Pública de Navarra, Navarra.
Ishikawa, T., Hayashi, A., Nagamatsu, S., Kyutoku, Y., Dan, I., Wada, T., . . . Kochi, N. (2018). Classification of strawberry fruit shape by machine learning. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2), 463 - 470.
J., T., J., F.-N., & Diago, M.-P. (2019). On-the-go hyperspectral imaging for the in-field estimation of grape berry soluble solids and anthocyanin concentration. Australian Journal of Grape and Wine Research, 25(1), 127-133.
Jiang, Q., Wu, G., Tian, C., Li, N., Yang, H., Bai, Y., & Zhang, B. (2021). Hyperspectral imaging for early identification of strawberry leaves diseases with machine learning and spectral fingerprint features. Infrared Physics and Technology, 118.
Jiang, S., Sun, J., Xin, Z., Mao, H., Wu, X., & Li, Q. (2017). Visualizing distribution of pesticide residues in mulberry leaves using NIR hyperspectral imaging. Journal of Food Process Engineering, 40(4).
Jiang, Y., Li, C., & Li, C. (2016). Nondestructive Detection and Quantification of Blueberry Bruising using Near-infrared (NIR) Hyperspectral Reflectance Imaging. Scientific Reports, 6.
Jing, M., Ma, Z., Yang, F., Zhang, Q., Ding, M., & Chen, M. (2021). Analysis of drought stress in strawberry based on dynamic fluorescence index. Paiguan Jixie Gongcheng Xuebao/Journal of Drainage and Irrigation Machinery Engineering, 39(11), 1182 - 1188.
Jung, D.-H., Kim, J. D., Kim, H.-Y., Lee, T. S., Kim, H. S., & Park, S. H. (2022). A Hyperspectral Data 3D Convolutional Neural Network Classification Model for Diagnosis of Gray Mold Disease in Strawberry Leaves. Frontiers in Plant Science, 13.
Kusumandari, D., Adzkia, M., Gultom, S., Nabo, M., & Nabo, A. (2019). Detection of Strawberry Plant Disease Based on Leaf Spot Using Color Segmentation. Journal of Physics: Serie de conferencias, 1230(1).
Lafontaine, M., Bockaj, Z., Freund, M., Vieth, K.-U., & Negara, C. L. (2015). Non-destructive determination of grape berry sugar concentration using visible/near infrared imaging and possible impact on wine quality. Technisches Messen, 82(12), 633-642.
Lazcano, R. (2014). Generación de una librería RVC - CAL para la etapa de estimación de abundancias en el proceso de análisis de imágenes hiperespectrales. Proyecto fin de grado, Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación.
Leiva-Valenzuela, G. A., & Lu, R. A. (2013). Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging. Journal of Food Engineering, 115(1), 91-98.
Li, X., Wei, Y., Xu, J., Feng, X., Wu, F., Zhou, R., . . . He, Y. (2018). SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology. Postharvest Biology and Technology, 143, 112-118.
Lian, Y., Long, Y., Song, H., & He, D. (2019). Determination of cherry tomatoes soluble solids content by hyperspectral imaging technology and modified interval random frog. International Agricultural Engineering Journal, 28(4), 313-321.
Liu, L., Shi, X., Zhang, S., Shi, Y., & Long, Y. (2020). Saccharinity test on cherry tomatoes based on hyperspectral imaging. International Journal of Design and Nature and Ecodynamics, 15(1), 103-11.
Liu, Q., Sun, K., Peng, J., Xing, M., Pan, L., & Tu, K. (2018). Identification of Bruise and Fungi Contamination in Strawberries Using Hyperspectral Imaging Technology and Multivariate Analysis. Food Analytical Methods, 11(5), 1518-1527.
Liu, Q., Sun, K., Zhao, N., Yang, J., Zhang, Y., Ma, C., . . . Tu, K. (2019). Information fusion of hyperspectral imaging and electronic nose for evaluation of fungal contamination in strawberries during decay. Postharvest Biology and Technology, 153, 152-160.
Liu, Q., Wei, K., Xiao, H., Tu, S., Sun, K., Sun, Y., . . . Tu, K. (2019). Near-infrared hyperspectral imaging rapidly detects the decay of postharvest strawberry based on water-soluble sugar analysis. Food Analytical Methods, 12(4), 936-946.
Liu, Y., Zhou, S., Wu, H., Han, W., Li, C., & Chen, H. (2022). Joint optimization of autoencoder and Self-Supervised Classifier: Anomaly detection of strawberries using hyperspectral imaging. Computers and Electronics in Agriculture, 198.
Lo Bianco, R., & Mirabella, F. (2018). Use of leaf and fruit morphometric analysis to identify and classify white mulberry (Morus alba l.) genotypes. Agriculture (Switzerland), 8(10).
Lu, J., Ehsani, R., Shi, Y., Abdulridha, J., de Castro, A. I., & Xu, Y. (2017). Field detection of anthracnose crown rot in strawberry using spectroscopy technology. Field detection of anthracnose crown rot in strawberry using spectroscopy technology, 135, 289-299.
Lu, W., Cai, M.-M., Zhang, Q., & Li, S. (2021). Fast Classification Method of Black Goji Berry (Lycium Ruthenicum Murr.) Based on Hyperspectral and Ensemble Learning. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 41(7), 2196 - 2204.
M., S., Schumann, A., & Boyd, N. (2019). Detection of Carolina Geranium (Geranium carolinianum) Growing in Competition with Strawberry Using Convolutional Neural Networks. Weed Science, 67(2), 239 - 245.
M., Z., C., L., F., T., & F., Y. (2017). Detection of internally bruised blueberries using hyperspectral transmittance imaging. Transactions of the ASABE, 60(5), 1489-1502.
Ministerio de Comercio Exterior y Turismo. (11 de Agosto de 2022). Perú se mantendría como líder mundial en exportaciones de arándanos en el 2022. Obtenido de https://www.gob.pe/institucion/mincetur/noticias/639924-peru-se-mantendria-como-lider-mundial-en-exportaciones-de-arandanos-en-el-2022
Miranda, J., Alves, M., Pozza, E., & Santos, H. (2020). Detection of coffee berry necrosis by digital image processing of landsat 8 oli satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 85.
Nedomová, Š., Kumbár, V., Pavloušek, P., Pytel, R., Lampíř, L., & Buchar, J. (2017). Effect of harvest date on composition and geometry of grape berries. European Journal of Horticultural Science, 82(1), 21-30.
Nguyen, L., Visi, A., Baranyai, L., Friedrich, L., & Mahajan, P. (2020). Application of hue spectra fingerprinting during cold storage and shelf-life of packaged sweet cherry. Journal of Food Measurement and Characterization, 14(5), 2689 - 2702.
Park, B., Shin, T.-S., Cho, J.-S., Lim, J.-H., & Park, K.-J. (2022). Characterizing Hyperspectral Microscope Imagery for Classification of Blueberry Firmness with Deep Learning Methods. Agronomy, 12(1).
Przybył, K., Pilarska, A., Duda, A., Wojcieszak, D., Frankowski, J., Koszela, K., . . . Gierz, Ł. (2019). Health properties and evaluation of quality of dried strawberry fruit produced using the convective drying method with neural image analysis. Proceedings of SPIE - The International Society for Optical Engineering.
Pullanagari, R. R., & Li, M. (2020). Uncertainty assessment for firmness and total soluble solids of sweet cherries using hyperspectral imaging and multivariate statistics. Journal of Food Engineering, 289. doi:10.1016/j.jfoodeng.2020.110177
Qiao, S. W., Zhang, J., & Pei, Z. (2020). Detection and Classification of Early Decay on Blueberry Based on Improved Deep Residual 3D Convolutional Neural Network in Hyperspectral Images. Scientific Programming, 2020.
Qiao, S., Tian, Y. G., He, K., Yao, P., Song, S., Wang, J., . . . Zhang, F. (2019). Research on simultaneous detection of SSC and FI of blueberry based on hyperspectral imaging combined MS-SPA. Engineering in Agriculture, Environment and Food, 12(4), 540-547.
Raj, R., Cosgun, A., & Kulić, D. (2022). Strawberry Water Content Estimation and Ripeness Classification Using Hyperspectral Sensing. Agronomy, 12(2). doi:10.3390/agronomy12020425
Sánchez, E. (2017). Procesado de imágenes hiperespectrales. Proyecto Fin de Carrera / Trabajo Fin de Grado, Universidad Politécnica de Madrid, Teoría de la Señal y Comunicaciones, Madrid.
Sandino, J., Ramos, O., & Amaya, D. (2016). Method for estimating leaf coverage in strawberry plants using digital image processing. Revista Brasileira de Engenharia Agricola e Ambiental, 20(8), 716-721.
Santa Cruz, M. (2018). Evaluación del tiempo de vida útil del arándano (Vaccinium Corymbosum) fresco, variedad azul, almacenado en atmósfera modificada. Tesis para optar el título profesional de ingeniero agroindustrial y comercio exterior, Universidad Señor de Sipán , Facultad de Ingeniería, arquitectura y urbanismo escuela académico profesional de ingeniería agroindustrial y comercio exterior, Pimentel.
Sardar, H. (2013). Comparative quality analysis of berry fruit using image processing. IET Conference Publications, 2013(647), 344 - 350.
Shao, Y., Wang, Y., Xuan, G., Gao, Z., Hu, Z., Gao, C., & Wang, K. (2020). Assessment of Strawberry Ripeness Using Hyper-spectral Imaging. Analytical Letters, 54(10), 1547-1560.
Shicheng, Q., Youwen, T., Qinghu, W., Shiyuan, S., & Ping, S. (2021). Nondestructive detection of decayed blueberry based on information fusion of hyperspectral imaging (HSI) and low-Field nuclear magnetic resonance (LF-NMR). Computers and Electronics in Agriculture, 184.
Siderhurst, M., Park, J., Buller, C., Iam, J., Manoukis, N., Jang, E., & Taylor, P. (2016). Raspberry Ketone Trifluoroacetate, a New Attractant for the Queensland Fruit Fly, Bactrocera Tryoni (Froggatt). Journal of Chemical Ecology, 42(2), 156-162.
Siedliska, A., Baranowski, P., Zubik, M., & Mazurek, W. (2017). Detection of pits in fresh and frozen cherries using a hyperspectral system in transmittance mode. Journal of Food Engineering, 215, 61-71.
Siedliska, A., Baranowski, P., Zubik, M., Mazurek, W., & Sosnowska, B. (2018). Detection of fungal infections in strawberry fruit by VNIR/SWIR hyperspectral imaging. Postharvest Biology and Technology, 139, 115-126.
Siedliska, A., Zubik, M., Baranowski, P., & Mazurek, W. (2017). Algorithms for detecting cherry pits on the basis of transmittance mode hyperspectral data. International Agrophysics, 31(4), 543-549.
Somogyi, E., Kun, Á., Lázár, J., Bodor-Pesti, P., & Nyitrainé Sárdy, D. (2021). Quantitative analysis of the berry size in grapevine cultivar 'Italia' • Digital image analysis of the grapevine. Progress in Agricultural Engineering Sciences, 17, 29-43.
Su, Z., Zhang, C., Yan, T., Zhu, J., Zeng, Y., Lu, X. G., & Fan, L. (2021). Application of Hyperspectral Imaging for Maturity and Soluble Solids Content Determination of Strawberry With Deep Learning Approaches. Frontiers in Plant Science, 12.
Tardaguila, J., Diago, M., Millan, B., Blasco, J., Cubero, S., & Aleixos, N. (2013). Applications of computer vision techniques in viticulture to assess canopy features, cluster morphology and berry size. Acta Horticulturae, 978, 77-84.
Wang, Z., Hu, M., & Zhai, G. (2018). Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data. Sensors (Switzerland), 18(4).
Williams, D., Britten, A., McCallum, S. J., Aitkenhead, M., Aitkenhead, M., Loades, K., . . . Graham, J. (2017). A method for automatic segmentation and splitting of hyperspectral images of raspberry plants collected in field conditions. Plant Methods, 13(1).
Yang, C., Lee, W. S., & Gader, P. (2014). Hyperspectral band selection for detecting different blueberry fruit maturity stages. Computers and Electronics in Agriculture, 109, 23-31.
Yeh, Y.-H., Chung, W.-C., Liao, J.-Y., Chung, C.-L., Kuo, Y.-F., & Lin, T.-T. (2016). Strawberry foliar anthracnose assessment by hyperspectral imaging. Computers and Electronics in Agriculture, 122, 1-9.
Zhang, C., Guo, C., Liu, F., Kong, W., He, Y., & Lou, B. (2016). Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine. Journal of Food Engineering, 179, 11-18.
Zhang, C., Wu, W., Zhou, L., Cheng, H., Ye, X., & He, Y. (2020). Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging. Food Chemistry, 319.
Zhang, J., Zhang, Q., & Whiting, M. (2014). Canopy light interception conversion in upright fruiting offshoots (UFO) sweet cherry orchard. American Society of Agricultural and Biological Engineers Annual International Meeting 2014, ASABE 2014, 2, 831-846.
Zhang, M., Jiang, Y., Li, C., & Yang, F. (2020). Fully convolutional networks for blueberry bruising and calyx segmentation using hyperspectral transmittance imaging. Biosystems Engineering, 192, 159-175.
Zhao, F., Yan, Z.-R., & Song, H.-Y. (2021). Hyperspectra Used to Recognize Black Goji Berry and Nitraria Tanggu. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 41(7), 2240 - 2244.
Zhao, F., Yan, Z.-R., Xue, J.-X., & Xu, B. (2021). Identification of Wild Black and Cultivated Goji Berries by Hyperspectral Image. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 41(1), 201 - 205.
Zhao, Y.-R., Yu, K.-Q., & He, Y. (2015). Hyperspectral Imaging Coupled with Random Frog and Calibration Models for Assessment of Total Soluble Solids in Mulberries. Journal of Analytical Methods in Chemistry, 2015.
Zingaretti, L., Monfort, A., & Pérez, M. (2021). Automatic fruit morphology phenome and genetic analysis: An application in the octoploid strawberry. Plant Phenomics, 2021.
Publicado
Número
Sección
Licencia
Derechos de autor 2023 Aleida Araceli Aguilar-Sánchez, Andy Miguel Valverde-Reyes
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license