ENSO Influence on Agricultural Drought Identified by SPEI Assessment in the Peruvian Tropical Andes, Mantaro Valley

Autores/as

DOI:

https://doi.org/10.57188/manglar.2023.018

Resumen

Agricultural drought is a serious threat for those locations where one of the most important economic activities is crop production, which occurrence has been rising due to climate change. In addition, different kinds of phenomena could exacerbate agricultural drought frequency, duration, and severity. For example, El Niño Southern Oscillation (ENSO), which mostly occurs in the tropical western and central pacific, directly affects the Peruvian territory. This study aims to understand ENSO's influence on agricultural drought in the Mantaro Valley, Peru since it is one of the most important agricultural lands in the country without clear scientific information linked to drought and ENSO events. For drought assessment using the Standardized Precipitation Evapotranspiration (SPEI) index and for ENSO events through a documentary and numerical analysis under Oceanic Niño Index (ONI) with information from several scientific recent papers to integrate information and formulate a clear event influence understanding. The results show that within Mantaro Valley along its four provinces and their six meteorological stations, 70% of agricultural drought events occurred when ENSO was present between 1990-2021. Also, the severity straight correlation percentage between both, ENSO and SPEI events is quite variable between 9.09%-70%. It is important to keep analyzing those stations with few data since it can provide a new scenario deportment and track new ENSO forecasting methods to rise adaptive capacity and guarantee national and international food security which has as an important supplier to the Mantaro Valley, Peru.

 

Citas

Arana-Ruedas, D. P. R., & Moggiano, N. (2022). Agriculture and water resources: UNFCCC influence on Peruvian adaptation regulations to increase resilience against climate change. Scientia Agropecuaria, 13(3), 221–230. https://doi.org/10.17268/sci.agropecu.2022.020

BCR. (2020). Características Socioconómicos Del Departamento De Junín. 17–3. http://maps.google.com/?ie=UTF8&ll=-11.79208,-75.157471&spn=4.666206,8.327637&z=71Participaronenlaelaboracióndeesteinforme

Beguería, S., Vicente-Serrano, S. M., Reig, F., & Latorre, B. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34(10), 3001–3023. https://doi.org/10.1002/joc.3887

Byakatonda, J., Parida, B. P., Moalafhi, D. B., Kenabatho, P. K., & Lesolle, D. (2020). Investigating relationship between drought severity in Botswana and ENSO. Natural Hazards, 100(1), 255–278. https://doi.org/10.1007/s11069-019-03810-1

Carrasco-Torrontegui, A., Gallegos-Riofrío, C. A., Delgado-Espinoza, F., & Swanson, M. (2021). Climate Change, Food Sovereignty, and Ancestral Farming Technologies in the Andes. Current Developments in Nutrition, 5(9), 54–60. https://doi.org/10.1093/cdn/nzaa073

Deivanayagam, A., Sarangi, R. K., & Palanisamy, M. (2022). Evaluating the Influence of El Nino–Southern Oscillation (ENSO) Patterns on the Spatio-Temporal Variations of Drought over Southern Peninsular Indian Region. Journal of the Indian Society of Remote Sensing, 6. https://doi.org/10.1007/s12524-022-01589-6

ENFEN. (2023). El Niño/La Niña Costeros - IGP. http://met.igp.gob.pe/elnino/lista_eventos.html

Ganguli, P., & Janga Reddy, M. (2013). Analysis of ENSO-based climate variability in modulating drought risks over western Rajasthan in India. Journal of Earth System Science, 122(1), 253–269. https://doi.org/10.1007/s12040-012-0247-x

Gubler, S., Rossa, A., Avalos, G., Brönnimann, S., Cristobal, K., Croci-Maspoli, M., Dapozzo, M., van der Elst, A., Escajadillo, Y., Flubacher, M., Garcia, T., Imfeld, N., Konzelmann, T., Lechthaler, F., Liniger, M., Quevedo, K., Ramos, H., Rohrer, M., Schwierz, C., … Wüthrich, B. (2020). Twinning SENAMHI and MeteoSwiss to co-develop climate services for the agricultural sector in Peru. Climate Services, 20. https://doi.org/10.1016/j.cliser.2020.100195

IPCC. (2021). Climate Change 2021: The Physical Science Basis - Summary for the Policymakers (Working Group I). In Climate Change 2021: The Physical Science Basis.

Islam, A. R. M. T., Salam, R., Yeasmin, N., Kamruzzaman, M., Shahid, S., Fattah, M. A., Uddin, A. S., Shahariar, M. H., Mondol, M. A. H., Jhajharia, D., & Techato, K. (2021). Spatiotemporal distribution of drought and its possible associations with ENSO indices in Bangladesh. Arabian Journal of Geosciences, 14(23). https://doi.org/10.1007/s12517-021-08849-8

Javed, T., Zhang, J., Bhattarai, N., Sha, Z., Rashid, S., Yun, B., Ahmad, S., Henchiri, M., & Kamran, M. (2021). Drought characterization across agricultural regions of China using standardized precipitation and vegetation water supply indices. Journal of Cleaner Production, 313(June), 127866. https://doi.org/10.1016/j.jclepro.2021.127866

Karatayev, M., Clarke, M., Salnikov, V., Bekseitova, R., & Nizamova, M. (2022). Monitoring climate change, drought conditions and wheat production in Eurasia: the case study of Kazakhstan. Heliyon, 8(1). https://doi.org/10.1016/j.heliyon.2021.e08660

Keil, A., Zeller, M., Wida, A., Sanim, B., & Birner, R. (2008). What determines farmers’ resilience towards ENSO-related drought? An empirical assessment in Central Sulawesi, Indonesia. Climatic Change, 86(3–4), 291–307. https://doi.org/10.1007/s10584-007-9326-4

Kronenberg, M., Schauwecker, S., Huggel, C., Salzmann, N., Drenkhan, F., Frey, H., Giraáldez, C., Gurgiser, W., Kaser, G., Juen, I., Suarez, W., Hernaández, J. G., Sanmartín, J. F., Ayros, E., Perry, B., & Rohrer, M. (2016). The Projected Precipitation Reduction over the Central Andes may Severely Affect Peruvian Glaciers and Hydropower Production. Energy Procedia, 97, 270–277. https://doi.org/10.1016/j.egypro.2016.10.072

Leng, G., Tang, Q., & Rayburg, S. (2015). Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global and Planetary Change, 126, 23–34. https://doi.org/10.1016/j.gloplacha.2015.01.003

Liu, Y., Liu, B., Yang, X., Bai, W., & Wang, J. (2015). Relationships between drought disasters and crop production during ENSO episodes across the North China Plain. Regional Environmental Change, 15(8), 1689–1701. https://doi.org/10.1007/s10113-014-0723-8

Manzanas, R., & Gutiérrez, J. M. (2019). Process-conditioned bias correction for seasonal forecasting: a case-study with ENSO in Peru. Climate Dynamics, 52(3–4), 1673–1683. https://doi.org/10.1007/s00382-018-4226-z

Mark, B. G., French, A., Baraer, M., Carey, M., Bury, J., Young, K. R., Polk, M. H., Wigmore, O., Lagos, P., Crumley, R., McKenzie, J. M., & Lautz, L. (2017). Glacier loss and hydro-social risks in the Peruvian Andes. Global and Planetary Change, 159, 61–76. https://doi.org/10.1016/j.gloplacha.2017.10.003

Meque, A., & Abiodun, B. J. (2015). Simulating the link between ENSO and summer drought in Southern Africa using regional climate models. Climate Dynamics, 44(7–8), 1881–1900. https://doi.org/10.1007/s00382-014-2143-3

Nikraftar, Z., Mostafaie, A., Sadegh, M., Afkueieh, J. H., & Pradhan, B. (2021). Multi-type assessment of global droughts and teleconnections. Weather and Climate Extremes, 34, 100402. https://doi.org/10.1016/j.wace.2021.100402

Sanabria, J., Calanca, P., Alarcón, C., & Canchari, G. (2014). Potential impacts of early twenty-first century changes in temperature and precipitation on rainfed annual crops in the Central Andes of Peru. Regional Environmental Change, 14(4), 1533–1548. https://doi.org/10.1007/s10113-014-0595-y

UNFCCC. (2015). The Paris Agreement. United Nations. https://doi.org/10.4324/9789276082569-2

Veettil, B. K., & Simões, J. C. (2019). The 2015/16 El Niño-related glacier changes in the tropical Andes. Frontiers of Earth Science, 13(2), 422–429. https://doi.org/10.1007/s11707-018-0738-4

Vergni, L., & Todisco, F. (2011). Spatio-temporal variability of precipitation, temperature and agricultural drought indices in Central Italy. Agricultural and Forest Meteorology, 151(3), 301–313. https://doi.org/10.1016/j.agrformet.2010.11.005

Vicente-Serrano, S. M., Aguilar, E., Martínez, R., Martín-Hernández, N., Azorin-Molina, C., Sanchez-Lorenzo, A., El Kenawy, A., Tomás-Burguera, M., Moran-Tejeda, E., López-Moreno, J. I., Revuelto, J., Beguería, S., Nieto, J. J., Drumond, A., Gimeno, L., & Nieto, R. (2017). The complex influence of ENSO on droughts in Ecuador. Climate Dynamics, 48(1–2), 405–427. https://doi.org/10.1007/s00382-016-3082-y

Vicente-Serrano, Sergio M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1

Wang, G. G., Cheng, H., Zhang, Y., & Yu, H. (2022). ENSO analysis and prediction using deep learning: A review. Neurocomputing, 520, 216–229. https://doi.org/10.1016/j.neucom.2022.11.078

Wang, T., Tu, X., Singh, V. P., Chen, X., Lin, K., Lai, R., & Zhou, Z. (2022). Socioeconomic drought analysis by standardized water supply and demand index under changing environment. Journal of Cleaner Production, 347(March), 131248. https://doi.org/10.1016/j.jclepro.2022.131248

WMO. (2017). Handbook of Drought Indicators and Indices (Issue 1173). https://doi.org/10.1201/9781315265551-12

Zhao, R., Wang, H., Chen, J., Fu, G., Zhan, C., & Yang, H. (2021). Quantitative analysis of nonlinear climate change impact on drought based on the standardized precipitation and evapotranspiration index. Ecological Indicators, 121, 107107. https://doi.org/10.1016/j.ecolind.2020.107107

Zubieta, R., Saavedra, M., Silva, Y., & Giráldez, L. (2017). Spatial analysis and temporal trends of daily precipitation concentration in the Mantaro river basin: Central andes of peru. Stochastic Environmental Research and Risk Assessment, 31(6), 1305–1318. https://doi.org/10.1007/s00477-016-1235-5

Descargas

Publicado

2023-07-05

Cómo citar

Arana-Ruedas, D. P. R., & Moggiano, N. (2023). ENSO Influence on Agricultural Drought Identified by SPEI Assessment in the Peruvian Tropical Andes, Mantaro Valley. Manglar, 20(2), 157–167. https://doi.org/10.57188/manglar.2023.018

Número

Sección

ARTÍCULO ORIGINAL

Artículos más leídos del mismo autor/a