Módulo de rigidez de especies de madera de importancia comercial para México: Pinus pseudostrobus, Tabebuia rosea y Quercus scytophylla

Autores/as

Resumen

La madera es un material biológico con aplicaciones en ingeniería y arquitectura. Su módulo de rigidez es útil para el cálculo de vigas que trabajan en flexión y en torsión. El objetivo de la investigación fue determinar los módulos de rigidez y los índices materiales de Pinus pseudostrobus, Tabebuia rosea y Quercus scytophylla. Se realizaron pruebas dinámicas de torsión en 35 probetas de pequeñas dimensiones de cada una de las especies. Se calcularon las correlaciones lineales y sus coeficientes de determinación de los módulos de rigidez en función de la densidad y de la frecuencia. Los principales resultados son: Las magnitudes de las densidades de las maderas de P. pseudostrobus, T. rosea y Q. scytophylla se ubican al interior del intervalo: 587 kg m-3, 735 kg m-3. El coeficiente de variación de las frecuencias para Q. scytophylla es 50% menor comparativamente con los coeficientes de P. pseudostrobus y T. rosea. El coeficiente de variación para P. pseudostrobus es 23% mayor que el de T. rosea y 146% mayor que el de Q. scytophylla. Se concluye que los valores reportados en esta investigación pueden ser útiles si estas especies de maderas se utilizan con fines estructurales.

Citas

American Institute of Timber Construction. (2012). Timber Construction Manual. USA, Englewood: American Institute of Timber Construction.

American Society for Testing and Materials. (2015a). ASTM C1259-15. Standard test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio for advanced ceramics by impulse excitation of vibration. USA, West Conshohocken: American Society for Testing and Materials.

American Society for Testing and Materials. (2015b). ASTM E1876-15. Standard test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio by impulse excitation of vibration. USA, West Conshohocken: American Society for Testing and Materials.

American Wood Council. (2015). National Design Specifications (NDS) for Wood Construction with Commentary. USA, Lessbourg: American Wood Council.

Anshari, B., Guan, Z. W., Kitamori, A., Jung, K., Hassel, I., & Komatsu, K. (2011). Mechanical and moisture-dependent swelling properties of compressed Japanese cedar. Construction and Building Materials, 25(4), 1718-1725. doi: https://doi.org/10.1016/j.conbuildmat.2010.11.095

Ashby, M. F. (2011). Materials selection in mechanical design. England, London: Butterworth-Heinemann.

Brandner, R., Tomasi, R., Moosbrugger, T., Serrano, E., & Dietsch, P. Editors. (2018). Properties, Testing and Design of Cross Laminated Timber: A state-of-the art report by Cost action FP1402/WG2. Germany, Aachen: Shaker Verlag. doi: https://doi.org/10.2370/9783844061437

Canadian Wood Council. (2017). Wood Design Manual 2017. Vol. 1 & 2. Canada, Ottawa: Canadian Wood Council.

Cavalli, A., Cibecchini, D., Goli, G., & Togni, M, (2017). Shear modulus of old timber. iForest, 10, 446-450. doi: https://doi.org/10.3832/ifor1787-009

Cha, J. K. (2015). Determination of true modulus of elasticity and modulus of rigidity for domestic woods with different slenderness ratios using nondestructive tests. Journal of the Korean Wood Science and Technology, 43(1), 36-42. doi: https://doi.org/10.5658/WOOD.2015.43.1.36

Chauhan, S., & Sethy, A. (2016). Differences in dynamic modulus of elasticity determined by three vibration methods and their relationship with static modulus of elasticity. Maderas. Ciencia y tecnología, 18(2), 373-382. doi: http://dx.doi.org/10.4067/S0718-221X2016005000034

Echenique, C. S., Banda, B. I., & Hernández, J. R. (2015). Physical and Mechanical Properties of the Wood Used in Indigenous Housing of the Tuchín Township, Department of Cordoba. Colombia. INGE CUC, 11(1), 99-108. doi: https://doi.org/10.17981/ingecuc.11.1.2015.10

Gutiérrez, H., & De la Vara, R. (2009). Análisis y diseño de experimentos. México, México: McGraw-Hill.

Hernández, S. A., & Sotomayor, J. R. (2014). Comportamiento elástico de la madera de Acer rubrum y de Abies balsamea. Madera y Bosques, 20(3), 113-123. doi: https://doi.org/10.21829/myb.2014.203156

International Organization for Standardization. (2014a). ISO 13061-1:2014. Physical and mechanical properties of wood -- Test methods for small clear wood specimens -- Part 1: Determination of moisture content for physical and mechanical tests. Switzerland, Geneva: International Organization for Standardization.

International Organization for Standardization. (2014b). ISO 13061-2:2014. Physical and mechanical properties of wood -- Test methods for small clear wood specimens -- Part 2: Determination of density for physical and mechanical tests. Switzerland, Geneva: International Organization for Standardization.

Jacob, M., Harrington, J., & Robinson, B. (2018). The Structural Use of Timber Handbook for Eurocode 5: Part 1-1. Ireland, Dublin: COFORD, Department of Agriculture, Food and the Marine.

Jaskowska-Lemanska, J., & Przesmycka, E. (2020). Semi-Destructive and Non-Destructive Tests of Timber Structure of Various Moisture Contents. Materials, 14, 96-118. doi: https://doi.org/10.3390/ma14010096

Keunecke, D., Sonderegger, W., Pereteanu, K., Lüthi, T., & Niemz, P. (2007). Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Science and Technology, 41(4), 309-327. doi: https://doi.org/10.1007/s00226-006-0107-4

Komán, S., & Feher, S. (2017). Physical and mechanical properties of Paulownia tomentosa wood planted in Hungaria. Wood Research, 62(2), 335-340.

Kránitz, K., Deublein, M., & Niemz, P. (2014). Determination of dynamic elastic moduli and shear moduli of aged wood by means of ultrasonic devices. Materials and Structures, 47(6), 925-936. doi: https://doi.org/10.1617/s11527-013-0103-8

Krüger, R., & Wagenführ, A. (2020). Comparison of methods for determining shera modulus of wood. European Journal of Wood and Wood Products, 78, 1087-1094. doi: https://doi.org/10.1007/s00107-020-01565-2

Llana, D. F., Íñiguez-González, G., Díez, M. R., & Arriaga, F. (2020). Nondestructive testing used on timber in Spain: A literature review. Maderas. Ciencia y tecnología, 22(2), 133-156. doi: http://dx.doi.org/10.4067/S0718-221X2020005000201

Malesza, J. (2015). Possible defects in wood, wood parameters variability and some of its influence on quality of building structure. Engineering Structures and Technologies, 7(2), 67-80. doi: https://doi.org/10.3846/2029882X.2016.1123895

Nadir, Y., Nagarajan, P., & Midhun, A. J. (2014). Measuring elastic constants of Hevea brasiliensis using compression and Iosipescu shear test. European Journal of Wood and Wood Products, 72(6), 749-758. doi: https://doi.org/10.1007/s00107-014-0842-4

Naruse, K. (2003). Estimation of shear moduli of wood by quasi-simple shear tests. Journal of Wood Science, 49(6), 479-484. doi: https://doi.org/10.1007/s10086-003-0515-0

Olsson, A., & Källsner, B. (2013). Shear modulus of structural timber evaluated by means of dynamic excitation and FE analysis. Materials and Structures, 48(4), 977-985. doi: https://doi.org/10.1617/s11527-013-0208-0

Ozyhar, T., Hering, S., Sanabria, S. J., & Niemz, P. (2013). Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Science and Technology, 47(2), 329-341. doi: https://doi.org/10.1007/s00226-012-0499-2

Rocco, F. A., Christoforo, A. L., Varanda, L. D., Chahud, E., Almeida, V., & Nunes, L. A. M. (2017). Shear and Longitudinal Modulus of Elasticity in Wood: Relations Based on Static Bending Tests. Acta Scientiarum. Technology, 39(4), 433-437. doi: https://doi.org/10.4025/actascitechnol.v39i4.30512

Roohnia, M., & Kohantorabi, M. (2015). Dynamic methods to evaluate the shear modulus of Wood. BioResources, 10(3), 4867-4876. doi: https://doi.org/10.15376/biores.10.3.4867-4876

Sotomayor, J. R. (2015). Banco FITECMA de características físico-mecánicas de maderas mexicanas. México, Morelia: Universidad Michoacana de San Nicolás de Hidalgo. doi: https://doi.org/10.13140/RG.2.1.3497.4884

Sotomayor, J. R. (2016). Módulos de rigidez dinámicos de siete maderas mexicanas determinados por vibraciones en torsión. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(2), 125-134. doi: https://doi.org/10.5154/r.rchscfa.2015.03.008

Sotomayor, J. R. (2018a). Características dinámicas de 22 maderas determinadas por el método de vibraciones transversales. Revista Mexicana de Ciencias Forestales, 9(48), 1-23. doi: https://doi.org/https://doi.org/10.29298/rmcf.v8i48.150

Sotomayor, J. R. (2018b). Índices materiales en flexión estática de maderas mexicanas con potencial para uso en la construcción. Ingeniería Mecánica Tecnología y Desarrollo, 6(2), 45-52.

Sotomayor, J. R., & Villaseñor, J. M. (2016). Módulo de rigidez y módulo dinámico de la madera de Acer saccharum Marshall y Thuja plicata L. Revista Forestal Mesoamericana Kurú, 13(33), 20-28. doi: https://doi.org/10.18845/rfmk.v13i33.2574

Sylvayanti, S. P., Nugroho, N., & Bahtiar, E. T. (2023). Bamboo Scrimber’s Physical and Mechanical Properties in Comparison to Four Structural Timber Species. Forest, 14, 146. doi: https://doi.org/10.3390/f14010146

Wang, Z., Xie, W., Wang, Z., & Cao, Y. (2018). Strain method for synchronous dynamic measurement of elastic, shear modulus and Poisson’s ratio of wood and wood composites. Construction and Building Materials, 182, 608-619. doi: https://doi.org/10.1016/j.conbuildmat.2018.06.139

Wang, Z., Zhang, D., Wang, Z., Liang, X., Yang, X., & Wang, J. (2023). Research Progress on Dynamic Testing Methods of Wood Shear Modulus: A Review. BioResources, 18(1), 2262-2270.

Yoshihara, H. (2012). Shear modulus and shear strength evaluation of solid wood by a modified ISO 15310 square-plate twist method. Drvna Industrija, 63(1), 51-55. doi: https://doi.org/10.5552/drind.2012.1125

Zhang, L., Li, Q., Liu, W., He, Q., Liu, Y., & Guo, K. (2022). Evaluation of the Shear Performance of Douglas-FirWood at Elevated Temperatures. materials, 15, 8386. https://doi.org/10.3390/ma15238386

Descargas

Publicado

2023-10-09

Cómo citar

Sotomayor Castellanos, J. R., Macedo Alquicira, I., & Zárate Medina, J. (2023). Módulo de rigidez de especies de madera de importancia comercial para México: Pinus pseudostrobus, Tabebuia rosea y Quercus scytophylla. Manglar, 20(3), 211–219. Recuperado a partir de https://revistas.untumbes.edu.pe/index.php/manglar/article/view/394

Número

Sección

ARTÍCULO ORIGINAL