Influencia de cepas bacterianas y condiciones de incubación en la viabilidad y calidad de ensilados biológicos para su uso en la producción animal

Autores/as

  • Yicson Javier Arevalo Aguirre Escuela de Agroindustrias, Facultad de Ciencias Agrarias, Universidad Nacional de Tumbes, Av. Panamericana Norte S/N, Pampa de la gallina, Tumbes, Perú.
  • Javier Querevalú Ortiz Escuela de Agroindustrias, Facultad de Ciencias Agrarias, Universidad Nacional de Tumbes, Av. Panamericana Norte S/N, Pampa de la gallina, Tumbes, Perú. https://orcid.org/0000-0001-5411-3586
  • Gloria María Ochoa Mogollón Escuela de Agroindustrias, Facultad de Ciencias Agrarias, Universidad Nacional de Tumbes, Av. Panamericana Norte S/N, Pampa de la gallina, Tumbes, Perú. https://orcid.org/0000-0003-4698-0078
  • Héctor Sánchez Suárez Grupo de investigación Biotecnología sustentable en alimentos y salud animal en Medicina Veterinaria y Zootecnia, de la Universidad Nacional de Tumbes, Av. Universitaria S/N, Las flores, Tumbes, Perú. https://orcid.org/0000-0003-2395-5056

Resumen

El objetivo de este estudio fue determinar la viabilidad del ensilado biológico (EB) utilizando dos cepas BAL nativas de gallina o cerdos, identificadas molecularmente, como materia prima residuos del fileteo (Rp) Chelidonichthys obscurus o Diplectrum conceptione, incubadas a temperatura ambiente (TA) o comparada con 30 °C y 40 °C. Las BALs se evaluaron bioquímicamente. Para el EB se utilizó 70% (Rp), 25% (melaza) y 5% (inóculo BAL), la viabilidad del EB se midió según el pH y porcentaje de acidez titulable (%A), (según día 3-5-10-15-30). En la incubación a TA, el EB usando Lactobacillus brevis del cerdo y Enterococcus avium de la gallina, con dos Rp, fue viable a partir del día 10. En la incubación a diferentes temperaturas, la fermentación se ve afectada a 40 °C (más rápida). La estabilidad a partir del día 10 con temperatura del EB de 32 °C, la cantidad de microorganismos BAL y los no deseables, estuvieron dentro del límite aceptable para alimento fermentados, el valor de la proteína de 33,8% a 36,7% en D. conceptione y 33% a 33,16% en C. obscurus. La materia prima y temperatura de incubación modifica el proceso y producto final donde las cepas BAL utilizadas en la incubación son indiferentes al proceso de fermentación.

Citas

FEEDAP et al. (2023). Assessment of eight feed additives consisting of Lactiplantibacillus plantarum CNCM I‐3235, L. plantarum CNCM I‐3736/DSM 11672, Pediococcus acidilactici CNCM I‐3237, P. acidilactici CNCM I‐4622/DSM 11673, Pediococcus pentosaceus NCIMB 12455, Acidipropionibacterium acidipropionici CNCM I‐4661, Lentilactobacillus buchneri NCIMB 40788/CNCM I‐4323 and L. buchneri NCIMB 40788/CNCM I‐4323 plus Lentilactobacillus hilgardii CNCM I‐4785 for all animal species for the renewal of their authorisation (Danst. EFSA Journal, 21(2). https://doi.org/10.2903/J.EFSA.2023.7865

Abbas, S., Riaz, A., Nawaz, S. K., & Arshad, N. (2021). Probiotic potential of locally isolated strain lactobacillus brevis mf179529 and its comparison with commercial probiotics in chicken model. Pakistan Journal of Agricultural Sciences, 58(1), 135–141. https://doi.org/10.21162/PAKJAS/21.869

Alzahrani, O. M., Fayez, M., Alswat, A. S., Alkafafy, M., Mahmoud, S. F., Al-Marri, T., Almuslem, A., Ashfaq, H., & Yusuf, S. (2022). Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species from Small Backyard Chicken Flocks. Antibiotics, 11(3). https://doi.org/10.3390/ANTIBIOTICS11030380

Arteaga-Chávez, F., López-Vera, M., Laurencio-Silva, M., Rondón-Castillo, A., Milián-Florido, G., Barrios-González, V., Bocourt-Salabarría, R., & El Limón, S. (2017). Selection and identification of Bacillus spp. isolates from the digestive tract of backyard chicken, with probiotic potential. Pastos y Forrajes, 40(1), 51–60.

Ayala, D. I., Chen, J. C., Bugarel, M., Loneragan, G. H., den Bakker, H. C., Kottapalli, K. R., Brashears, M. M., & Nightingale, K. K. (2018). Molecular detection and quantification of viable probiotic strains in animal feedstuffs using the commercial direct fed microbial Lactobacillus animalis NP51 as a model. Journal of Microbiological Methods, 149, 36–43. https://doi.org/10.1016/J.MIMET.2018.04.012

Baindara, P., Chakraborty, R., Holliday, Z. M., Mandal, S. M., & Schrum, A. G. (2021). Oral probiotics in coronavirus disease 2019: connecting the gut–lung axis to viral pathogenesis, inflammation, secondary infection and clinical trials. In New Microbes and New Infections (Vol. 40). Elsevier Ltd. https://doi.org/10.1016/j.nmni.2021.100837

Barriga-Sánchez, M., Churacutipa, M., & Salas, A. (2019). Elaboración de ensilado biológico a partir de residuo crudo de trucha arco iris (Oncorhynchus mykiss (Walbaum, 1792)) en Puno, Perú. Ecología Aplicada, 18(1), 37. https://doi.org/10.21704/rea.v18i1.1304

Betancur, C., Martínez, Y., Tellez‐isaias, G., Avellaneda, M. C., & Velázquez‐martí, B. (2020). In vitro characterization of indigenous probiotic strains isolated from colombian creole pigs. Animals, 10(7), 1–11.

Calderón-Quispe, V., Churacutipa-Mamani, M., Salas, A., Barriga-Sánchez, M., & Araníbar, M. J. (2017). Effect of the inclusion of silage of trout residues in pigs feed and its effect on the productive performance and the taste of meat. Revista de Investigaciones Veterinarias Del Peru, 28(2), 265–274. https://doi.org/10.15381/rivep.v28i2.13055

Castillo-Mercado, R. A., Bucio-Galindo, A., Salinas-Hernández, R. M., Aranda-Ibáñez, E. M., Izquierdo-Reyes, F., & Ramos-Juárez, J. A. (2020). Milk quality of dual-purpose cows supplemented with biological fish silage (Pterygoplichthys sp.) as a protein source. Revista Colombiana de Ciencias Pecuarias, 33(4), 252–263. https://doi.org/10.17533/UDEA.RCCP.V33N4A05

Castillo, W. E. G., Suárez, H. A. sánchez, & Mogollón, G. M. O. (2019). Evaluation of fish residues and shrimp head silages fermented with Lactobacillus fermentus isolated from pig. Revista de Investigaciones Veterinarias Del Peru, 30(4), 1456–1469. https://doi.org/10.15381/rivep.v30i4.17165

Chiang, M. L., Chen, H. C., Chen, K. N., Lin, Y. C., Lin, Y. T., & Chen, M. J. (2015). Optimizing Production of Two Potential Probiotic Lactobacilli Strains Isolated from Piglet Feces as Feed Additives for Weaned Piglets. Asian-Australas J Anim Sci, 28(8), 1163–1170. https://doi.org/10.5713/ajas.14.0780

Chu, T. W., Chen, C. N., & Pan, C. Y. (2020). Antimicrobial status of tilapia (Oreochromis niloticus) fed Enterococcus avium originally isolated from goldfish intestine. Aquaculture Reports, 17. https://doi.org/10.1016/J.AQREP.2020.100397

Cossio, D. S., Hernández, Y. G., & Mendoza, J. C. D. (2018). Development of probiotics for animal production. Experiences in Cuba Desarrollo de probióticos destinados a la producción animal: experiencias en Cuba. Cuban Journal of Agricultural Science, 52(4), 1.

Costa, M. N. F., Furtado, Y. I. C., Monteiro, C. C., Brasiliense, A. R. P., & Yoshioka, E. T. O. (2024). Physiological responses of tambaqui (Colossoma macropomum) fed diets supplemented with silage from fish and vegetables residues. Brazilian Journal of Biology, 84. https://doi.org/10.1590/1519-6984.255493

Eissa, A. E., Yusuf, M. S., Younis, N. A., Fekry, M., Dessouki, A. A., Ismail, G. A., Ford, H., & Abdelatty, A. M. (2022). Effect of poultry offal silage with or without betaine supplementation on growth performance, intestinal morphometry, spleen histomorphology of Nile tilapia (Oreochromis niloticus) fingerlings. Journal of Animal Physiology and Animal Nutrition, 106(5), 1189–1195.

Espe, M., & Lied, E. (1999). Fish silage prepared from different cooked and uncooked raw materials: chemical changes during storage at different temperatures. Journal of the Science of Food and Agriculture, 79(2), 327–332.

Eyeralde, L. (2018). Aislamiento y caracterización de bacterias ácido lácticas de intestino de cerdos con potencial probiótico. Universidad Nacional del Centro de la Provincia de Buenos Aires. Tesis. Facultad de Ciencias Veterinarias.

Fabiszewska, A. U., Zielińska, K. J., & Wróbel, B. (2019). Trends in designing microbial silage quality by biotechnological methods using lactic acid bacteria inoculants: a minireview. World Journal of Microbiology and Biotechnology, 35(5), 1–8. https://doi.org/10.1007/s11274-019-2649-2

Fadare, O. S., Anyadike, C. H., Momoh, A. O., & Bello, T. K. (2023). Antimicrobial properties, safety, and probiotic attributes of lactic acid bacteria isolated from Sauerkraut. African Journal of Clinical and Experimental Microbiology, 24(1), 61–72. https://doi.org/10.4314/ajcem.v24i1.8

Feng, Y., Qiao, L., Liu, R., Yao, H., & Gao, C. (2017). Potential probiotic properties of lactic acid bacteria isolated from the intestinal mucosa of healthy piglets. Annals of Microbiology, 67(3), 239–253. https://doi.org/10.1007/s13213-017-1254-6

Fernández-Herrero, A., Tabera, A., Agüeria, D., & Manca, E. %J R.-R. electrónica de V. (2013). Obtención, caracterización microbiológica y físicoquímica de ensilado biológico de anchoíta (Engraulis anchoíta). Revista electrónica de Veterinaria-REDVET, 14(2), 15-19.

Fernández Herrero, A. (2021). Chemical and biological ensilates. An alternative for the integral and sustainable use of fishing waste in Argentina | Marine and Fishery Sciences (MAFIS). Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Mar Del Plata, Argentina.

Fernández Herrero, A., Fernández Compás, A., Salomone, A., & Vittone, M. (2017). Utilización de inoculo comercial para la producción de ensilado de pescado. Revista Electronica de Veterinaria, 18(9), 1-9.

García, P. P., Ortiz, J. Q., Mogollón, G. O., & Suárez, H. S. (2020). Biological silage of shrimp waste fermented with lactic acid bacteria: Use as a biofertilizer in pasture crops and as feed for backyard pigs. Scientia Agropecuaria, 11(4), 459–471. https://doi.org/10.17268/SCI.AGROPECU.2020.04.01

García, W. E. C., Suárez, H. A. S., & Mogollón, G. M. O. (2019). Evaluation of fish residues and shrimp head silages fermented with Lactobacillus fermentus isolated from pig. Revista de Investigaciones Veterinarias Del Peru, 30(4), 1456–1469. https://doi.org/10.15381/rivep.v30i4.17165

Gaviria, Y. S., Figueroa, O. A., Zapata, J. E., Gaviria, Y. S., Figueroa, O. A., & Zapata, J. E. (2021). Efecto de la inclusión de ensilado químico de vísceras de tilapia roja (Oreochromis spp.) en dietas para pollos de engorde sobre los parámetros productivos y sanguíneos. Información Tecnológica, 32(3), 79–88.

Gebert, S., Davis, E., Rehberger, T., & Maxwell, C. V. (2011). Lactobacillus brevis strain 1E1 administered to piglets through milk supplementation prior to weaning maintains intestinal integrity after the weaning event. Beneficial Microbes, 2(1), 35–45.

Ghosh, S. K., Reddy, R., Xavier, K. A. M., Balange, A. K., Kumar, H. S., & Nayak, B. B. (2022). Comparative Evaluation of Microbial Ensilaging of Fish, Vegetable and Fish-Vegetable Composite Wastes. Waste and Biomass Valorization, 14(5), 1657–1666. https://doi.org/10.1007/S12649-022-01956-X/METRICS

Guimarães, C. C., Maciel, I. V., Silva, A. F., Lopes, A. F., Ramón Carpio, K. C., & Inhamuns da Silva, A. J. (2021). Aspectos biotecnológicos da silagem biológica de resíduos do Tambaqui. Revista Em Agronegócio e Meio Ambiente, 14(1), 205–215.

Guo, X., Xu, D., Li, F., Bai, J., & Su, R. (2023). Current approaches on the roles of lactic acid bacteria in crop silage. Microbial Biotechnology, 16(1), 67–87.

Henry, J.-G., Javier, M.-B., & Cristian, P. (2015). Characterization of the Fermentation Process and the Inhibition Effect of Lactobacillus lactis in Staphylococcus aureus and Staphylococcus epidermidis. Revista de Medicina Veterinaria, 30, 15–29. https://doi.org/10.19052/mv.3606

Hernández-García, J. E., Sebastián-Frizzo, L., Rodríguez-Fernández, J. C., Valdez-Paneca, G., Virginia-Zbrun, M., & Calero-Herrera, I. %J R. de S. A. (2019). Evaluación in vitro del potencial probiótico de Lactobacillus acidophilus SS80 y Streptococcus thermophilus SS77. Revista de Salud Animal, 41(1), 1-13.

Hu, G., Jiang, H., Zong, Y., Datsomor, O., Kou, L., An, Y., Zhao, J., & Miao, L. (2022). Characterization of Lactic Acid-Producing Bacteria Isolated from Rumen: Growth, Acid and Bile Salt Tolerance, and Antimicrobial Function. Fermentation, 8(8). https://doi.org/10.3390/FERMENTATION8080385

Kariyawasam, K. M. G. M. M., Lee, N. K., & Paik, H. D. (2021). Synbiotic yoghurt supplemented with novel probiotic Lactobacillus brevis KU200019 and fructooligosaccharides. Food Bioscience, 39. https://doi.org/10.1016/j.fbio.2020.100835

Kern, M., Aschenbach, J. R., Tedin, K., Pieper, R., Loss, H., & Lodemann, U. (2017). Characterization of Inflammasome Components in Pig Intestine and Analysis of the Influence of Probiotic Enterococcus Faecium during an Escherichia Coli Challenge. Immunological Investigations, 46(7), 742–757. https://doi.org/10.1080/08820139.2017.1360341

Kouhi, F., Mirzaei, H., Nami, Y., Khandaghi, J., & Javadi, A. (2022). Potential probiotic and safety characterisation of enterococcus bacteria isolated from indigenous fermented motal cheese. International Dairy Journal, 126. https://doi.org/10.1016/J.IDAIRYJ.2021.105247

Lähteinen, T., Lindholm, A., Rinttilä, T., Junnikkala, S., Kant, R., Pietilä, T. E., Levonen, K., von Ossowski, I., Solano-Aguilar, G., Jakava-Viljanen, M., & Palva, A. (2014). Effect of Lactobacillus brevis ATCC 8287 as a feeding supplement on the performance and immune function of piglets. Veterinary Immunology and Immunopathology, 158(1–2), 14–25. https://doi.org/10.1016/j.vetimm.2013.09.002

Lengliz, S., Abbassi, M. S., Rehaiem, A., Ben Chehida, N., & Najar, T. (2021). Characterization of bacteriocinogenic Enterococcus isolates from wild and laboratory rabbits for the selection of autochthonous probiotic strains in Tunisia. Journal of Applied Microbiology, 131(3), 1474–1486. https://doi.org/10.1111/JAM.15047

Lezcano, P., Vazquez, A., Bolaños, A., … J. P.-C. J. of, & 2015, U. (2015). Ensilado de alimentos alternativos, de origen cubano, una alternativa técnica, económica y ambiental para la producción de carne de cerdo. Cuban Journal of Agricultural Science, 49(1), 1–5.

Libonatti, C., Agüeria, D., García, C., & Basualdo, M. (2019). Weissella paramesenteroides encapsulation and its application in the use of fish waste. Revista Argentina de Microbiologia, 51(1), 81–83.

Liu, H., Ji, H. F., Zhang, D. Y., Wang, S. X., Wang, J., Shan, D. C., & Wang, Y. M. (2015). Effects of Lactobacillus brevis preparation on growth performance, fecal microflora and serum profile in weaned pigs. Livestock Science, 178, 251–254. https://doi.org/10.1016/J.LIVSCI.2015.06.002

Lutfullah, G., Khan, A. A., Amjad, A. Y., & Perveen, S. (2014). Comparative study of heavy metals in dried and fluid milk in Peshawar by atomic absorption spectrophotometry. Scientific World Journal, 2014, 715845.

MacFaddin, J. F. (2003). Pruebas bioquímicas para la identificación de bacterias de importancia clínica. Ed. Médica Panamericana.

Martins, M. I. E. G., da Costa, J. I., Gonçalves, G. S., & Vidotti, R. M. (2016). Feasibility Study of a Fish By-Product Recovery Plant with a Processing Capacity of 1,000 kg/Day. Journal of Aquatic Food Product Technology, 25(8), 1202–1212. https://doi.org/10.1080/10498850.2015.1046098

Mogollon, C. R., Mogollon, C. R., Mogollón, G. O., Aguilera, R. A., Ortíz, J. Q., & Súarez, H. S. (2021). Producción y evaluación de inóculos lácteos probióticos obtenidos del tracto digestivo de lechón (Sus scrofa domesticus) propuestos para alimentación porcina. Revista Mexicana de Ciencias Pecuarias, 12(1), 120–137. https://doi.org/10.22319/rmcp.v12i1.5445

Mohanty, U., Majumdar, R. K., Mohanty, B., Mehta, N. K., & Parhi, J. (2020). Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysates from visceral waste of Labeo rohita. Journal of Food Science and Technology, 58(11), 4349–4358. https://doi.org/10.1007/S13197-020-04915-3

Mugwanda, K., Hamese, S., Van Zyl, W. F., Prinsloo, E., Du Plessis, M., Dicks, L. M. T., & Thimiri Govinda Raj, D. B. (2023). Recent advances in genetic tools for engineering probiotic lactic acid bacteria. Bioscience Reports, 43(1), 20211299. https://doi.org/10.1042/BSR20211299/232386

Mushtaq, M., Arshad, N., Hameed, M., Munir, A., Javed, G. A., & Rehman, A. (2023). Lead biosorption efficiency of Levilactobacillus brevis MZ384011 and Levilactobacillus brevis MW362779: A response surface based approach. Saudi Journal of Biological Sciences, 30(2). https://doi.org/10.1016/J.SJBS.2022.103547

Nag, M., Lahiri, D., Dey, A., Sarkar, T., Pati, S., Joshi, S., Bunawan, H., Mohammed, A., Edinur, H. A., Ghosh, S., & Ray, R. R. (2022). Seafood Discards: A Potent Source of Enzymes and Biomacromolecules With Nutritional and Nutraceutical Significance. Frontiers in Nutrition, 9, 879929. https://doi.org/10.3389/FNUT.2022.879929

Ng, S. Y., Koon, S. S., Padam, B. S., & Chye, F. Y. (2015). Evaluation of probiotic potential of lactic acid bacteria isolated from traditional Malaysian fermented Bambangan (Mangifera pajang). CyTA: Journal of Food, 13(4), 563–572. https://doi.org/10.1080/19476337.2015.1020342

Niwa, T., Yokoyama, S. I., Mochizuki, M., & Osawa, T. (2021). Production of optically active hexahydrocurcumin by human intestinal bacterium in vitro. Biological and Pharmaceutical Bulletin, 44(1), 136–1339. https://doi.org/10.1248/bpb.b20-00584

Noohi, N., Papizadeh, M., Rohani, M., Talebi, M., & Pourshafie, M. R. (2020). Screening for probiotic characters in lactobacilli isolated from chickens revealed the intra-species diversity of Lactobacillus brevis. Animal Nutrition, 7(1) 119-126. https://doi.org/10.1016/j.aninu.2020.07.005

Okoye, C. O., Wang, Y., Gao, L., Wu, Y., Li, X., Sun, J., & Jiang, J. (2023). The performance of lactic acid bacteria in silage production: A review of modern biotechnology for silage improvement. Microbiological Research, 266, 127212. https://doi.org/10.1016/j.micres.2022.127212

Ostadzadeh, M., Habibi Najafi, M. B., & Ehsani, M. R. (2022). Lactic acid bacteria isolated from traditional Iranian butter with probiotic and cholesterol-lowering properties: In vitro and in situ activity. Food Science and Nutrition, 11(1), 350-363. https://doi.org/10.1002/FSN3.3066

Ozyurt, C. E., Boga, E. K., Ozkutuk, A. S., Ucar, Y., Durmus, M., & Ozyurt, G. (2020). Bioconversion of Discard Fish (Equulites klunzingeri and Carassius gibelio) Fermented with Natural Lactic Acid Bacteria; the Chemical and Microbiological Quality of Ensilage. Waste and Biomass Valorization, 11(4), 1435–1442. https://doi.org/10.1007/s12649-018-0493-5

Palkar, N. D. (2018). Preparation of Co-Dried Fish Silage by Using Fish Market Waste and Its Comparative Study. International Journal of Pure & Applied Bioscience, 6(2), 1567–1577. https://doi.org/10.18782/2320-7051.6511

Park, J., Jin, G. D., Pak, J. I., Won, J., & Kim, E. B. (2017). Development of a Rapid Identification Method for the Differentiation of Enterococcus Species Using a Species-Specific Multiplex PCR Based on Comparative Genomics. Current Microbiology, 74(4), 476–483. https://doi.org/10.1007/s00284-017-1210-5

Pérez, M. B., Argañaraz Martinez, E., Babot, J. D., Pérez Chaia, A., & Saguir, F. M. (2022). Growth studies of dominant lactic acid bacteria in orange juice and selection of strains to ferment citric fruit juices with probiotic potential. Brazilian Journal of Microbiology, 53, 2145–2156. https://doi.org/10.1007/S42770-022-00830-1

Plaza, J. L., Bolívar, G., & Ramírez, C. (2016). Effect of drying process in silage from fish waste with L. Plantarum in physicochemical and microbiological characteristics of the product. Vitae, 23, S299–S303.

Pudgar, P., Povšič, K., Čuk, K., Seme, K., Petelin, M., & Gašperšič, R. (2020). Probiotic strains of Lactobacillus brevis and Lactobacillus plantarum as adjunct to non-surgical periodontal therapy: 3-month results of a randomized controlled clinical trial. Clinical Oral Investigations, 25, 1411–1422. https://doi.org/10.1007/s00784-020-03449-4

Rabaoui, G., Sánchez-Juanes, F., Tebini, M., Naghmouchi, K., Bellido, J. L. M., Ben-Mahrez, K., & Réjiba, S. (2022). Potential Probiotic Lactic Acid Bacteria with Anti-Penicillium expansum Activity from Different Species of Tunisian Edible Snails. Probiotics and Antimicrobial Proteins, 15, 82–106. https://doi.org/10.1007/S12602-021-09882-5

Raeesi, R., Shabanpour, B., & Pourashouri, P. (2021). Quality Evaluation of Produced Silage and Extracted Oil from Rainbow Trout (Oncorhynchus mykiss) Wastes Using Acidic and Fermentation Methods. Waste and Biomass Valorization, 12(9), 4931–4942. https://doi.org/10.1007/S12649-020-01331-8

Rathod, G., & Kairam, N. (2018). Preparation of omega 3 rich oral supplement using dairy and non-dairy based ingredients. J Food Sci Technol, 55(2), 760–766. https://doi.org/10.1007/s13197-017-2988-7

Renaldi, G., Sirinupong, N., & Samakradhamrongthai, R. S. (2022). Effect of extraction pH and temperature on yield and physicochemical properties of gelatin from Atlantic salmon (Salmo salar) skin. Agriculture and Natural Resources, 56(4), 687–696. https://doi.org/10.34044/J.ANRES.2022.56.4.03

Reyes-Jurado, F., Palou, E., & López-Malo, A. (2014). Métodos de evaluación de la actividad antimicrobiana y de determinación de los componentes químicas de los aceites esenciales. Temas selectos de ingeniería de alimentos, 8(1), 68–78.

Rojas-Runjaic, B., Perdomo, D. A., García, D. E., González-Estopiñán, M., Corredor, Z., Moratinos, P., & Santos, O. (2011). Rendimiento en canal y fileteado de la tilapia (Oreochromis niloticus) variedad Chitralada producida en el estado Trujillo, Venezuela. Zootecnia Tropical, 29(1), 113–126.

Safari, R., Yaghoubzadeh, Z., Bankehsaz, Z., Reyhani Poul, S., Jafari, A., & Abbaszadeh, M. M. (2022). Evaluation of quality and chemical spoilage indicators of biological silage produced from chicken waste and its comparison with meat, blood meal and kilka fish meal. Journal of Food Science and Technology (Iran), 18(121), 203–213.

Sajib, M., Langeland, M., & Undeland, I. (2022). Effect of antioxidants on lipid oxidation in herring (Clupea harengus) co-product silage during its production, heat-treatment and storage. Scientific Reports, 12(1). https://doi.org/10.1038/S41598-022-07409-8

Salazar Céspedes, C. M., Chacón Nieto, G., Alarcón Vélez, J., Luque Sánchez, C., Cornejo Urbina, R., & Chalking, F. (2015). Flota de arrastre de fondo de menor escala en la Región Tumbes. Instituto Del Mar Del Perú - IMARPE.

Salehizadeh, M., Modarressi, M. H., Mousavi, S. N., & Ebrahimi, M. T. (2020). Evaluation of lactic acid bacteria isolated from poultry feces as potential probiotic and its in vitro competitive activity against salmonella typhimurium. Veterinary Research Forum, 11(1), 67–75. https://doi.org/10.30466/vrf.2018.84395.2110

Sánchez Suarez, H., Gloria, & Mogollon, O. (2016). Producción y valoración de alimentos para animales monogástricos, con ensilado biológico de restos del procesamiento de langostino (Litopenaeus vannamei) fermentados con lactobacilos. Scientia Agropecuaria, 7, 181-190. https://doi.org/10.17268/sci.agropecu.2016.03.04

Shabani, A., Boldaji, F., Dastar, B., Ghoorchi, T., Zerehdaran, S., & Ashayerizadeh, A. (2021). Evaluation of increasing concentrations of fish waste silage in diets on growth performance, gastrointestinal microbial population, and intestinal morphology of broiler chickens. Animal Feed Science and Technology, 275, 114874. https://doi.org/10.1016/J.ANIFEEDSCI.2021.114874

Shabani, A., Jazi, V., Ashayerizadeh, A., & Barekatain, R. (2019). Inclusion of fish waste silage in broiler diets affects gut microflora, cecal short-chain fatty acids, digestive enzyme activity, nutrient digestibility, and excreta gas emission. Poultry Science, 98(10), 4909–4918. https://doi.org/10.3382/ps/pez244

Song, M. W., Park, J. Y., Kim, W. J., Kim, K. T., & Paik, H. D. (2022). Fermentative effects by probiotic Lactobacillus brevis B7 on antioxidant and anti-inflammatory properties of hydroponic ginseng. Food Science and Biotechnology, 32, 169–180. https://doi.org/10.1007/S10068-022-01183-Z

Speranza, B., Racioppo, A., Campaniello, D., Altieri, C., Sinigaglia, M., Corbo, M. R., & Bevilacqua, A. (2020). Use of Autochthonous Lactiplantibacillus plantarum Strains to Produce Fermented Fish Products. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.615904

Sulfahri, S., Rauf Husain, D., & Gunawan, S. (2020). Antimicrobial potential of lactic acid bacteria from domestic chickens (Gallus domesticus) from south Celebes, Indonesia, in different growth phases: in vitro experiments supported by computational docking. In Iranian Journal of Microbiology, 12(1), 62-69.

Sun, B., Wang, R., Yue, Z., Zheng, H., Zhou, Q., Bao, C., Shi, B., Lv, Y., Shan, A., & Ma, Q. (2023). Effects of sweet potato vine silage supplementation on meat quality, antioxidant capacity and immune function in finishing pigs. Journal of Animal Physiology and Animal Nutrition, 107(2), 556–563. https://doi.org/10.1111/JPN.13737

Terrones España, S., & Reyes Avalos, W. (2018). Efecto de dietas con ensilado biológico de residuos de molusco en el crecimiento del camarón Cryphiops caementarius y tilapia Oreochromis niloticus en co-cultivo intensivo. Scientia agropecuaria, 9(2), 167–176.

Turner, P. V. (2018). The role of the gut microbiota on animal model reproducibility. Animal Models and Experimental Medicine, 1(2), 109–115.

Vera-Mejía, R., Ormaza-Donoso, J., Muñoz-Cedeño, J., Arteaga-Chávez, F., & Sánchez-Miranda, L. (2018). Cepas de Lactobacillus plantarum con potencialidades probióticas aisladas de cerdos criollos. Revista de Salud Animal, 40(2), 1–12.

Wang, G., Song, Q., Huang, S., Wang, Y., Cai, S., Yu, H., Ding, X., Zeng, X., & Zhang, J. (2020). Effect of antimicrobial peptide microcin J25 on growth performance, immune regulation, and intestinal microbiota in broiler chickens challenged with escherichia coli and salmonella. Animals, 10(2), 345. https://doi.org/10.3390/ani10020345

Wang, X., Wang, W., Lv, H., Zhang, H., Liu, Y., Zhang, M., Wang, Y., & Tan, Z. (2020). Probiotic Potential and Wide-spectrum Antimicrobial Activity of Lactic Acid Bacteria Isolated from Infant Feces. Probiotics and Antimicrobial Proteins, 13, 90–101. https://doi.org/10.1007/s12602-020-09658-3

Yang, X., Pan, X., Jia, Z., Bai, B., Zhi, W., Chen, H., Ma, C., & Ma, D. (2022). Oral administration of Lactobacillus brevis 23017 combined with ellagic acid attenuates intestinal inflammatory injury caused by Eimeria infection by activating the Nrf2/HO-1 antioxidant pathway. Veterinary Research, 53(1), 21. https://doi.org/10.1186/S13567-022-01042-Z

Zapata, I. C., Sepúlveda-Valencia, U., & Rojano, B. A. (2015). Efecto del tiempo de almacenamiento sobre las propiedades fisicoquímicas, probióticas y antioxidantes de yogurt saborizado con mortiño (Vaccinium meridionale Sw). Información tecnológica, 26(2), 17–28.

Ziyaei, K., & Hosseini, S. V. (2021). Review of hydrolyzed protein from fishery by-product: Production methods, application and Biological Properties. Iranian journal of food science and technology, 18(111), 383–395. https://doi.org/10.29252/fsct.18.02.30

Descargas

Publicado

2023-10-09

Cómo citar

Arevalo Aguirre, Y. J., Querevalú Ortiz, J., Ochoa Mogollón, G. M., & Sánchez Suárez, H. (2023). Influencia de cepas bacterianas y condiciones de incubación en la viabilidad y calidad de ensilados biológicos para su uso en la producción animal. Manglar, 20(3), 221–231. Recuperado a partir de https://revistas.untumbes.edu.pe/index.php/manglar/article/view/395

Número

Sección

ARTÍCULO ORIGINAL

Artículos más leídos del mismo autor/a