Degradación del poliestireno por insectos y microorganismos asociados: Análisis bibliométrico y una revisión narrativa de las técnicas utilizadas en la caracterización
DOI:
https://doi.org/10.57188/manglar.2024.039Resumen
El poliestireno, conocido por su resistencia a la degradación, constituye una fuente importante de contaminación ambiental. Sin embargo, se ha descubierto que ciertos insectos y microorganismos asociados lo degradan, utilizando este material como fuente de carbono y energía. Por tanto, el objetivo de esta revisión es evaluar críticamente las técnicas de caracterización utilizadas para analizar la biodegradación del poliestireno por insectos y microorganismos asociados. Se busca identificar las fortalezas y limitaciones de estas técnicas, así como su contribución al conocimiento de la degradación del poliestireno en un contexto ambiental. Se realizó un análisis bibliométrico y una revisión sistemática basada en el método PRISMA, analizando 100 artículos de la base de datos Scopus y 83 de la Web of Science entre 2015 y 2023. El método estadístico aplicado a los metadatos fue bibliométrico con aspectos cualitativos y cuantitativos. Los resultados demostraron que las técnicas de caracterización aplicadas, como la microscopía de barrido electrónico, mostraron la formación de biopelículas microbianas en la superficie y cavidades del poliestireno biodegradado. Así mismo, la cromatografía de permeación en gel indicó cambios en la morfología del poliestireno biodegradado. Finalmente, la espectroscopía infrarroja por transformada de Fourier (FTIR) y la resonancia magnética nuclear de protones (H-NMR) demostraron signos de oxidación, despolimerización e incorporación de oxígeno a la cadena de hidrocarburos del poliestireno debido al proceso de degradación. Estos resultados enfatizan la efectividad de las técnicas de caracterización para detectar y describir cambios significativos en el poliestireno durante su biodegradación. Su comprensión es crucial para futuras investigaciones y la evaluación del impacto ecológico de la degradación del poliestireno por organismos biodegradadores.
Descargas
Referencias
Amato-Lourenço, L. F., dos Santos Galvão, L., de Weger, L. A., Hiemstra, P. S., Vijver, M. G., & Mauad, T. (2020). An emerging class of air pollutants: Potential effects of microplastics to respiratory human health? The Science of the Total Environment, 749, 141676. https://doi.org/10.1016/j.scitotenv.2020.141676
Billen, P., Khalifa, L., Van Gerven, F., Tavernier, S., & Spatari, S. (2020). Technological application potential of polyethylene and polystyrene biodegradation by macro-organisms such as mealworms and wax moth larvae. Science of The Total Environment, 735, 139521. https://doi.org/10.1016/j.scitotenv.2020.139521
Brandon, A. M., Garcia, A. M., Khlystov, N. A., Wu, W.-M., & Criddle, C. S. (2021). Enhanced Bioavailability and Microbial Biodegradation of Polystyrene in an Enrichment Derived from the Gut Microbiome of Tenebrio molitor (Mealworm Larvae). Environmental Science & Technology, 55(3), 2027-2036. https://doi.org/10.1021/acs.est.0c04952
Castañeta, G., Gutiérrez, A. F., Nacaratte, F., & Manzano, C. A. (2020). Microplásticos: Un contaminante que crece en todas las esferas ambientales, sus características y posibles riesgos para la salud pública por exposición. Revista Boliviana de Química, 37(3), 142-157.
Cucini, C., Funari, R., Mercati, D., Nardi, F., Carapelli, A., & Marri, L. (2022). Polystyrene shaping effect on the enriched bacterial community from the plastic-eating Alphitobius diaperinus (Insecta: Coleoptera). Symbiosis, 86(3), 305-313. https://doi.org/10.1007/s13199-022-00847-y
Dioses-Salinas, D. C., Pizarro-Ortega, C. I., & De-la-Torre, G. E. (2020). A methodological approach of the current literature on microplastic contamination in terrestrial environments: Current knowledge and baseline considerations. Science of The Total Environment, 730, 139164. https://doi.org/10.1016/j.scitotenv.2020.139164
Fu, C., Muhammad, A., Noreen, K., Atia, N., Kashif, I., Usman, A., Mohammed, A., Jung, M., & Ali, N. (2023). Interactive effects of polystyrene microplastics and Pb on growth and phytochemicals in mung bean (Vigna radiata L.). Journal of Hazardous Materials, 449, 130966. https://doi.org/10.1016/j.jhazmat.2023.130966
Guangorena, G., & Kobayashi, T. (2024) Properties of chitin and its regenerated hydrogels from the insect Zophobas morio fed citrus biomass or polystyrene. Gels, 10(7), 433. https://doi.org/10.3390/gels10070433
He, L., Yang, S., Ding, J., Li, Z., Pang, J., Xing, D., Zhao, L., Zheng, H., Ren, N., & Wu, W. (2023). Responses of gut microbiomes to commercial polyester polymer biodegradation in Tenebrio molitor Larvae. Journal of Hazardous Materials, 457, 131759. https://doi.org/10.1016/j.jhazmat.2023.131759
Hwang, J., Choi, D., Han, S., Jung, S. Y., Choi, J., & Hong, J. (2020). Potential toxicity of polystyrene microplastic particles. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-64464-9
Iswahyudi, I., Wahyu, V., Guau, G., Adi, S., Garfansa, M., Mujiyanti, W., & Sholeh, M. (2024) Investigating the impact of microplastics type of polyethylene, polypropylene, and polystyrene on seed germination and early growth of rice plants. Environmental Quality Management, 34(1). https://doi.org/10.1002/tqem.22287
Jiang, S., Su, T., Zhao, J., & Wang, Z. (2021). Biodegradation of Polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus Larvae and Comparison of Their Degradation Effects. Polymers, 13(20), Article 20. https://doi.org/10.3390/polym13203539
Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M., & Klobučar, G. (2019). Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution, 250, 831-838. https://doi.org/10.1016/j.envpol.2019.04.055
Kang, M., Kwak, M., & Kim, Y. (2023). Polystyrene microplastics biodegradation by gut bacterial Enterobacter hormaechei from mealworms under anaerobic conditions: Anaerobic oxidation and depolymerization. Journal of Hazardous Materials, 5(459), 132045.
https://doi.org/10.1016/j.jhazmat.2023.132045
Kim, H. R., Lee, H. M., Yu, H. C., Jeon, E., Lee, S., Li, J., & Kim, D.-H. (2020). Biodegradation of Polystyrene by Pseudomonas sp. Isolated from the Gut of Superworms (Larvae of Zophobas atratus). Environmental Science & Technology, 54(11), 6987-6996. https://doi.org/10.1021/acs.est.0c01495
Kundungal, H., Synshiang, K., & Devipriya, S. P. (2021). Biodegradation of polystyrene wastes by a newly reported honey bee pest Uloma sp. larvae: An insight to the ability of polystyrene-fed larvae to complete its life cycle. Environmental Challenges, 4, 100083. https://doi.org/10.1016/j.envc.2021.100083
Lee, H. M., Kim, H. R., Jeon, E., Yu, H. C., Lee, S., Li, J., & Kim, D.-H. (2020). Evaluation of the Biodegradation Efficiency of Four Various Types of Plastics by Pseudomonas aeruginosa Isolated from the Gut Extract of Superworms. Microorganisms, 8(9), 1341. https://doi.org/10.3390/microorganisms8091341
Lin, H.-H., & Liu, H.-H. (2020). FTIR Analysis of Biodegradation of Polystyrene by Intestinal Bacteria Isolated from Zophobas Morio and Tenebrio Molitor. Proceedings of Engineering and Technology Innovation, 17. https://doi.org/10.46604/peti.2021.5450
Lixia, D., Shunyan, C., Jiaxing, L., Jiawei, C., Fengyuan, C., Xiaodong, Z., Hongbin, L. (2024). Nanoplastics impair growth and nitrogen fixation of marine nitrogen-fixing cyanobacteria. Environmental Pollution, 350, 123960. https://doi.org/10.1016/j.envpol.2024.123960
López Aguirre, J. F., Pomaquero Yuquilema, J. C., & López Salazar, J. L. (2020). Análisis de la contaminación ambiental por plásticos en la ciudad de Riobamba. Polo del Conocimiento: Revista científico - profesional, 5(12), 725-742.
Lou, Y., Ekaterina, P., Yang, S.-S., Lu, B., Liu, B., Ren, N., Corvini, P. F.-X., & Xing, D. (2020). Biodegradation of Polyethylene and Polystyrene by Greater Wax Moth Larvae (Galleria mellonella L.) and the Effect of Co-diet Supplementation on the Core Gut Microbiome. Environmental Science & Technology, 54(5), 2821-2831. https://doi.org/10.1021/acs.est.9b07044
Lou, Y., Li, Y., Lu, B., Liu, Q., Yang, S.-S., Liu, B., Ren, N., Wu, W.-M., & Xing, D. (2021). Response of the yellow mealworm (Tenebrio molitor) gut microbiome to diet shifts during polystyrene and polyethylene biodegradation. Journal of Hazardous Materials, 416, 126222. https://doi.org/10.1016/j.jhazmat.2021.126222
Lu, B., Lou, Y., Wang, J., Liu, Q., Yang, S., Ren, N., Wu, W., & Xing, D. (2024). Understanding the Ecological Robustness and adaptability of the gut microbiome in plastic-degrading superworms (Zophobas atratus) in response to microplastic and antibiotics. Bioremediation and Biotechnology, 58(27), 12028-12041. https://doi.org/10.1021/acs.est.4c01692
Lv, S. Wang, Q., Li, Y., Li, G., Hu, R., Chen, Z., & Shao, Z. (2024). Biodegradation of polystyrene (PS) and polypropylene (PP) by deep-sea psychrophilic bacteria of Pseudoalteromonas in accompany with simultaneous release of microplastics and nanoplastics, Science of the Total Environment, 948, 174857. https://doi.org/10.1016/j.scitotenv.2024.174857
Machona, O., Chidzwondo, F., & Mangoyi, R. (2022). Tenebrio molitor: Possible source of polystyrene-degrading bacteria. BMC Biotechnology, 22(1), 2. https://doi.org/10.1186/s12896-021-00733-3
Marmanillo, V. I. V., Farfán, B. C., Camino, K. L. S., Llasa, G. J. S., & Nina, B. A. H. (2021). Aislamiento de enterobacterias de tenebrio molitor (coleoptera: Tenebrionidae) como organismos degradadores del poliestireno expandido bajo condiciones de laboratorio. Ciencia Latina Revista Científica Multidisciplinar, 5(6), 11169-11185. https://doi.org/10.37811/cl_rcm.v5i6.1160
Massuga, F., Larson, M. A., Kuasoski, M., & Doliveira, S. L. D. (2022). Plastic Waste and Sustainability: Reflections and Impacts of the Covid-19 Pandemic in the Socio-Cultural and Environmental Context. Revista de Gestão Social e Ambiental, 16(1), Article 1. https://doi.org/10.24857/rgsa.v16.2860
Meng, T. K., Kassim, A. S. B. M., Razak, A. H. B. A., & Fauzi, N. A. B. M. (2021). Bacillus megaterium: A Potential and an Efficient Bio-Degrader of Polystyrene. Braz. Arch. Biol. Technol, e21190321-e21190321.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Palmer, K. J., Lauder, K., Christopher, K., Guerra, F., Welch, R., & Bertuccio, A. J. (2022). Biodegradation of Expanded Polystyrene by Larval and Adult Stages of Tenebrio molitor with Varying Substrates and Beddings. Environmental Processes, 9(1), 3. https://doi.org/10.1007/s40710-021-00556-6
Pham, T., Longing, S., & Siebecker, M. (2023). Consumption and degradation of different consumer plastics by mealworms (Tenebrio molitor): Effects of plastic type, time, and mealworm origin. Journal of Cleaner Production, 403, 136842. https://doi.org/10.1016/j.jclepro.2023.136842
Peng, B.-Y., Li, Y., Fan, R., Chen, Z., Chen, J., Brandon, A. M., Criddle, C. S., Zhang, Y., & Wu, W.-M. (2020). Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environmental Pollution, 266, 115206. https://doi.org/10.1016/j.envpol.2020.115206
Peng, B.-Y., Su, Y., Chen, Z., Chen, J., Zhou, X., Benbow, M. E., Criddle, C. S., Wu, W.-M., & Zhang, Y. (2019). Biodegradation of Polystyrene by Dark (Tenebrio obscurus) and Yellow (Tenebrio molitor) Mealworms (Coleoptera: Tenebrionidae). Environmental Science & Technology, 53(9), 5256-5265. https://doi.org/10.1021/acs.est.8b06963
Rana, R., Akram, H., Shirin, S., Biplob, D., Ahmod, M., & Tanwne, S. (2024). Microplastics increase cadmium absorption and impair nutrient uptake and growth in red amaranth (Amaranthus tricolor L.) in the presence of cadmium and biochar. BMC Plant Biology, 24, 608. https://doi.org/10.1186/s12870-024-05312-0
Rosenboom, J.-G., Langer, R., & Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7(2), Article 2. https://doi.org/10.1038/s41578-021-00407-8
Shubham, V., O´Connor, O., Gora, A., Rehman, S., Kiron, V., Siriyappagouder, P., Dahle, D., Kógel, T., Ornsrud, R., & Olsvik, P. (2024). Mixture toxicity of 6PPD-quinone and polystyrene nanoplastics in zebrafish. Environmental Pollution, 348, 123835. https://doi.org/10.1016/j.envpol.2024.123835
Sufang, Z., Renju, L., Shiwei, L., Benjuan, Z., Juan, W., & Zongze, S. (2024). Polystyrene-degrading bacteria in the gut microbiome of marine benthic polychaetes support enhanced digestion of plastic fragments. Communications Earth and Environment, 5(162). https://doi.org/10.1038/s43247-024-01318-6
Tang, Z.-L., Kuo, T.-A., & Liu, H.-H. (2017). The Study of the Microbes Degraded Polystyrene. Advances in Technology Innovation, 2(1), Article 1.
Tsochatzis, E., Berggreen, I. E., Tedeschi, F., Ntrallou, K., Gika, H., & Corredig, M. (2021). Gut Microbiome and Degradation Product Formation during Biodegradation of Expanded Polystyrene by Mealworm Larvae under Different Feeding Strategies. Molecules (Basel, Switzerland), 26(24), 7568. https://doi.org/10.3390/molecules26247568
Urbanek, A. K., Rybak, J., Wróbel, M., Leluk, K., & Mirończuk, A. M. (2020). A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. Environmental Pollution, 262, 114281. https://doi.org/10.1016/j.envpol.2020.114281
Ventura, E., Goncalves, J., Vilke, J., de Errico, G., Benedetti, M., Regolio, F., & Bebianno, M. (2024). Are mixtures of micro/nanoplastics more toxic than individual micro or nanoplastic contamination in the clam Ruditapes decussatus?. Marine Pollution Bulletin, 206, 116697. https://doi.org/10.1016/j.marpolbul.2024.116697
Wang, Q., Chen, H., Gu, W., Wang, S., & Li, Y. (202). Biodegradation of aged polyethylene (PE) and polystyrene (PS) microplastics by yellow mealworms (Tenebrio molitor larvae). Science of The Total Environment, 927, 172243. https://doi.org/10.1016/j.scitotenv.2024.172243
Wang, S., Shi, W., Huang, Z., Zhou, N., Xie, Y., Tang, Y., Hu, F., Liu, G., & Zheng, H. (2022). Complete digestion/biodegradation of polystyrene microplastics by greater wax moth (Galleria mellonella) larvae: Direct in vivo evidence, gut microbiota independence, and potential metabolic pathways. Journal of Hazardous Materials, 423, 127213. https://doi.org/10.1016/j.jhazmat.2021.127213
Wang, S., Yu, H., Li, W., Song, E., Zhao, Z., Xu, J., Gao, S., Wang, D., & Xie, Z. (2024). Biodegradation of four polyolefin plastics in superworms (Larvae of Zophobas atratus) and effects on the gut microbiome. Journal of Hazardous Materials, 477, 135381. https://doi.org/10.1016/j.jhazmat.2024.135381
Wang, Z., Xin, X., Shi, X., & Zhang, Y. (2020). A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum. The Science of the Total Environment, 726, 138564. https://doi.org/10.1016/j.scitotenv.2020.138564
Woo, S., Song, I., & Cha, H. J. (2020). Fast and Facile Biodegradation of Polystyrene by the Gut Microbial Flora of Plesiophthalmus davidis Larvae. Applied and Environmental Microbiology, 86(18), e01361-20. https://doi.org/10.1128/AEM.01361-20
Yang, L., Gao, J., Liu, Y., Zhuang, G., Peng, X., Wu, W.-M., & Zhuang, X. (2021). Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere, 262, 127818. https://doi.org/10.1016/j.chemosphere.2020.127818
Yang, S.-S., Brandon, A. M., Andrew Flanagan, J. C., Yang, J., Ning, D., Cai, S.-Y., Fan, H.-Q., Wang, Z.-Y., Ren, J., Benbow, E., Ren, N.-Q., Waymouth, R. M., Zhou, J., Criddle, C. S., & Wu, W.-M. (2018). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191, 979-989. https://doi.org/10.1016/j.chemosphere.2017.10.117
Yang, S.-S., Wu, W.-M., Brandon, A. M., Fan, H.-Q., Receveur, J. P., Li, Y., Wang, Z.-Y., Fan, R., McClellan, R. L., Gao, S.-H., Ning, D., Phillips, D. H., Peng, B.-Y., Wang, H., Cai, S.-Y., Li, P., Cai, W.-W., Ding, L.-Y., Yang, J., … Criddle, C. S. (2018). Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere, 212, 262-271. https://doi.org/10.1016/j.chemosphere.2018.08.078
Yang, Y., Wang, J., & Xia, M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of The Total Environment, 708, 135233. https://doi.org/10.1016/j.scitotenv.2019.135233
Yang, X., Wen, P., Yang, Y., Jia, P., Li, W., & Pei, D. (2023). Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1001750
Yang, Y., Yang, J., Wu, W.-M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015a). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environmental Science & Technology, 49(20), 12080-12086. https://doi.org/10.1021/acs.est.5b02661
Yang, Y., Yang, J., Wu, W.-M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015b). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. Environmental Science & Technology, 49(20), 12087-12093. https://doi.org/10.1021/acs.est.5b02663
Ying, H., Jiang, S., Zhang, Q., Zhou, W., Liang, J., Xu, Y., & Su, W. (2024). Protective effect of Cordycepin on blood-testis barrier against pre-puberty polystyrene nanoplastics exposure in male rats. Particle and Fibre Toxicology, 21 (1): 30. https://doi.org/10.1186/s12989-024-00590-w
Yolanda, D., Anggiani, M., Agung, M., Anggraeni, S., & Afianti, N. (2024). Polystyrene microplastics degradation by microbial consortium from jakarta bay. Environmental Quality Management, 34(1), e22291. https://doi: 10.1002/tqem.22291
Yoon, J., Kim, B., & Kim, K. (2024). Distribution of microplastics in soil by types of land use in metropolitan area of Seoul. Applied Biological Chemistry, 67(15). https://doi.org/10.1186/s13765-024-00869-8
Young, R., Ahmed, K., Court, L., Castro, C., Marcora, A., Boctor, J., Paull, C., Wijffels, G., Rane, R., Edwards, O., Walsh, T., & Pandey, G. (2024). Improved reference quality genome sequence of the plastic-degrading greater wax moth, Galleria mellonella. G3(bethesda), 14(6), jkae070. https://doi: 10.1093/g3journal/jkae070
Yue, X., Xiu, C., Zhang, M., Hou, W., Chong, Z., Jia, L., Da-Lei, Z., Liao, H., Yan, C., Jian, H., Tao, L., & Li-Ping, Z. (2024). Polystyrene nanoplastics induce apoptosis, autophagy, and steroido-genesis disruption in granulosa cells to reduce oocyte quality and fertility by inhibiting the PI3K/AKT pathway in female mice. Journal of Nanobiotechnology, 22(1), 460. https://doi.org/10.1186/s12951-024-02735-7.
Zhen, Z., Wenrui, S., Peiwen, Y., Shixiu, W., Liming, C., Zhaowen, C., Liang, L., Faisal, K., Menghong, H., Rong, X., & Youji, W. (2024). Bio-based microplastic polylactic acid exerts the similar toxic effects to traditional petroleum-based microplastic polystyrene in mussels. Science Total Environmental, 10, 946, 174386. https://doi: 10.1016/j.scitotenv.2024.174386.
Zhuang, H., Zhenxia, L., Menglin, W., Bo, L., Yiwen, C., & Ziyu, L. (2024). Effects of microplastics and combined pollution of polystyrene and di-n-octyl phthalate on photosynthesis of cucumber (Cucumis sativus L.). Science of the Total Environment, 947, 174426. https://doi.org/10.1016/j.scitotenv.2024.174426
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Carmen Carreño-Farfán, Marilín Sánchez Purihuaman, Teresa Oriele Barrios-Mendoza, Isis Cristel Córdova-Barrios, Segundo Vásquez Llanos, Pedro Córdova-Mendoza, Ada Patricia Barturén Quispe
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license