Degradación del poliestireno por insectos y microorganismos asociados: Análisis bibliométrico y una revisión narrativa de las técnicas utilizadas en la caracterización

Autores/as

DOI:

https://doi.org/10.57188/manglar.2024.039

Resumen

El poliestireno, conocido por su resistencia a la degradación, constituye una fuente importante de contaminación ambiental. Sin embargo, se ha descubierto que ciertos insectos y microorganismos asociados lo degradan, utilizando este material como fuente de carbono y energía. Por tanto, el objetivo de esta revisión es evaluar críticamente las técnicas de caracterización utilizadas para analizar la biodegradación del poliestireno por insectos y microorganismos asociados. Se busca identificar las fortalezas y limitaciones de estas técnicas, así como su contribución al conocimiento de la degradación del poliestireno en un contexto ambiental. Se realizó un análisis bibliométrico y una revisión sistemática basada en el método PRISMA, analizando 100 artículos de la base de datos Scopus y 83 de la Web of Science entre 2015 y 2023. El método estadístico aplicado a los metadatos fue bibliométrico con aspectos cualitativos y cuantitativos. Los resultados demostraron que las técnicas de caracterización aplicadas, como la microscopía de barrido electrónico, mostraron la formación de biopelículas microbianas en la superficie y cavidades del poliestireno biodegradado. Así mismo, la cromatografía de permeación en gel indicó cambios en la morfología del poliestireno biodegradado. Finalmente, la espectroscopía infrarroja por transformada de Fourier (FTIR) y la resonancia magnética nuclear de protones (H-NMR) demostraron signos de oxidación, despolimerización e incorporación de oxígeno a la cadena de hidrocarburos del poliestireno debido al proceso de degradación. Estos resultados enfatizan la efectividad de las técnicas de caracterización para detectar y describir cambios significativos en el poliestireno durante su biodegradación. Su comprensión es crucial para futuras investigaciones y la evaluación del impacto ecológico de la degradación del poliestireno por organismos biodegradadores.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Amato-Lourenço, L. F., dos Santos Galvão, L., de Weger, L. A., Hiemstra, P. S., Vijver, M. G., & Mauad, T. (2020). An emerging class of air pollutants: Potential effects of microplastics to respiratory human health? The Science of the Total Environment, 749, 141676. https://doi.org/10.1016/j.scitotenv.2020.141676

Billen, P., Khalifa, L., Van Gerven, F., Tavernier, S., & Spatari, S. (2020). Technological application potential of polyethylene and polystyrene biodegradation by macro-organisms such as mealworms and wax moth larvae. Science of The Total Environment, 735, 139521. https://doi.org/10.1016/j.scitotenv.2020.139521

Brandon, A. M., Garcia, A. M., Khlystov, N. A., Wu, W.-M., & Criddle, C. S. (2021). Enhanced Bioavailability and Microbial Biodegradation of Polystyrene in an Enrichment Derived from the Gut Microbiome of Tenebrio molitor (Mealworm Larvae). Environmental Science & Technology, 55(3), 2027-2036. https://doi.org/10.1021/acs.est.0c04952

Castañeta, G., Gutiérrez, A. F., Nacaratte, F., & Manzano, C. A. (2020). Microplásticos: Un contaminante que crece en todas las esferas ambientales, sus características y posibles riesgos para la salud pública por exposición. Revista Boliviana de Química, 37(3), 142-157.

Cucini, C., Funari, R., Mercati, D., Nardi, F., Carapelli, A., & Marri, L. (2022). Polystyrene shaping effect on the enriched bacterial community from the plastic-eating Alphitobius diaperinus (Insecta: Coleoptera). Symbiosis, 86(3), 305-313. https://doi.org/10.1007/s13199-022-00847-y

Dioses-Salinas, D. C., Pizarro-Ortega, C. I., & De-la-Torre, G. E. (2020). A methodological approach of the current literature on microplastic contamination in terrestrial environments: Current knowledge and baseline considerations. Science of The Total Environment, 730, 139164. https://doi.org/10.1016/j.scitotenv.2020.139164

Fu, C., Muhammad, A., Noreen, K., Atia, N., Kashif, I., Usman, A., Mohammed, A., Jung, M., & Ali, N. (2023). Interactive effects of polystyrene microplastics and Pb on growth and phytochemicals in mung bean (Vigna radiata L.). Journal of Hazardous Materials, 449, 130966. https://doi.org/10.1016/j.jhazmat.2023.130966

Guangorena, G., & Kobayashi, T. (2024) Properties of chitin and its regenerated hydrogels from the insect Zophobas morio fed citrus biomass or polystyrene. Gels, 10(7), 433. https://doi.org/10.3390/gels10070433

He, L., Yang, S., Ding, J., Li, Z., Pang, J., Xing, D., Zhao, L., Zheng, H., Ren, N., & Wu, W. (2023). Responses of gut microbiomes to commercial polyester polymer biodegradation in Tenebrio molitor Larvae. Journal of Hazardous Materials, 457, 131759. https://doi.org/10.1016/j.jhazmat.2023.131759

Hwang, J., Choi, D., Han, S., Jung, S. Y., Choi, J., & Hong, J. (2020). Potential toxicity of polystyrene microplastic particles. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-64464-9

Iswahyudi, I., Wahyu, V., Guau, G., Adi, S., Garfansa, M., Mujiyanti, W., & Sholeh, M. (2024) Investigating the impact of microplastics type of polyethylene, polypropylene, and polystyrene on seed germination and early growth of rice plants. Environmental Quality Management, 34(1). https://doi.org/10.1002/tqem.22287

Jiang, S., Su, T., Zhao, J., & Wang, Z. (2021). Biodegradation of Polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus Larvae and Comparison of Their Degradation Effects. Polymers, 13(20), Article 20. https://doi.org/10.3390/polym13203539

Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M., & Klobučar, G. (2019). Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution, 250, 831-838. https://doi.org/10.1016/j.envpol.2019.04.055

Kang, M., Kwak, M., & Kim, Y. (2023). Polystyrene microplastics biodegradation by gut bacterial Enterobacter hormaechei from mealworms under anaerobic conditions: Anaerobic oxidation and depolymerization. Journal of Hazardous Materials, 5(459), 132045.

https://doi.org/10.1016/j.jhazmat.2023.132045

Kim, H. R., Lee, H. M., Yu, H. C., Jeon, E., Lee, S., Li, J., & Kim, D.-H. (2020). Biodegradation of Polystyrene by Pseudomonas sp. Isolated from the Gut of Superworms (Larvae of Zophobas atratus). Environmental Science & Technology, 54(11), 6987-6996. https://doi.org/10.1021/acs.est.0c01495

Kundungal, H., Synshiang, K., & Devipriya, S. P. (2021). Biodegradation of polystyrene wastes by a newly reported honey bee pest Uloma sp. larvae: An insight to the ability of polystyrene-fed larvae to complete its life cycle. Environmental Challenges, 4, 100083. https://doi.org/10.1016/j.envc.2021.100083

Lee, H. M., Kim, H. R., Jeon, E., Yu, H. C., Lee, S., Li, J., & Kim, D.-H. (2020). Evaluation of the Biodegradation Efficiency of Four Various Types of Plastics by Pseudomonas aeruginosa Isolated from the Gut Extract of Superworms. Microorganisms, 8(9), 1341. https://doi.org/10.3390/microorganisms8091341

Lin, H.-H., & Liu, H.-H. (2020). FTIR Analysis of Biodegradation of Polystyrene by Intestinal Bacteria Isolated from Zophobas Morio and Tenebrio Molitor. Proceedings of Engineering and Technology Innovation, 17. https://doi.org/10.46604/peti.2021.5450

Lixia, D., Shunyan, C., Jiaxing, L., Jiawei, C., Fengyuan, C., Xiaodong, Z., Hongbin, L. (2024). Nanoplastics impair growth and nitrogen fixation of marine nitrogen-fixing cyanobacteria. Environmental Pollution, 350, 123960. https://doi.org/10.1016/j.envpol.2024.123960

López Aguirre, J. F., Pomaquero Yuquilema, J. C., & López Salazar, J. L. (2020). Análisis de la contaminación ambiental por plásticos en la ciudad de Riobamba. Polo del Conocimiento: Revista científico - profesional, 5(12), 725-742.

Lou, Y., Ekaterina, P., Yang, S.-S., Lu, B., Liu, B., Ren, N., Corvini, P. F.-X., & Xing, D. (2020). Biodegradation of Polyethylene and Polystyrene by Greater Wax Moth Larvae (Galleria mellonella L.) and the Effect of Co-diet Supplementation on the Core Gut Microbiome. Environmental Science & Technology, 54(5), 2821-2831. https://doi.org/10.1021/acs.est.9b07044

Lou, Y., Li, Y., Lu, B., Liu, Q., Yang, S.-S., Liu, B., Ren, N., Wu, W.-M., & Xing, D. (2021). Response of the yellow mealworm (Tenebrio molitor) gut microbiome to diet shifts during polystyrene and polyethylene biodegradation. Journal of Hazardous Materials, 416, 126222. https://doi.org/10.1016/j.jhazmat.2021.126222

Lu, B., Lou, Y., Wang, J., Liu, Q., Yang, S., Ren, N., Wu, W., & Xing, D. (2024). Understanding the Ecological Robustness and adaptability of the gut microbiome in plastic-degrading superworms (Zophobas atratus) in response to microplastic and antibiotics. Bioremediation and Biotechnology, 58(27), 12028-12041. https://doi.org/10.1021/acs.est.4c01692

Lv, S. Wang, Q., Li, Y., Li, G., Hu, R., Chen, Z., & Shao, Z. (2024). Biodegradation of polystyrene (PS) and polypropylene (PP) by deep-sea psychrophilic bacteria of Pseudoalteromonas in accompany with simultaneous release of microplastics and nanoplastics, Science of the Total Environment, 948, 174857. https://doi.org/10.1016/j.scitotenv.2024.174857

Machona, O., Chidzwondo, F., & Mangoyi, R. (2022). Tenebrio molitor: Possible source of polystyrene-degrading bacteria. BMC Biotechnology, 22(1), 2. https://doi.org/10.1186/s12896-021-00733-3

Marmanillo, V. I. V., Farfán, B. C., Camino, K. L. S., Llasa, G. J. S., & Nina, B. A. H. (2021). Aislamiento de enterobacterias de tenebrio molitor (coleoptera: Tenebrionidae) como organismos degradadores del poliestireno expandido bajo condiciones de laboratorio. Ciencia Latina Revista Científica Multidisciplinar, 5(6), 11169-11185. https://doi.org/10.37811/cl_rcm.v5i6.1160

Massuga, F., Larson, M. A., Kuasoski, M., & Doliveira, S. L. D. (2022). Plastic Waste and Sustainability: Reflections and Impacts of the Covid-19 Pandemic in the Socio-Cultural and Environmental Context. Revista de Gestão Social e Ambiental, 16(1), Article 1. https://doi.org/10.24857/rgsa.v16.2860

Meng, T. K., Kassim, A. S. B. M., Razak, A. H. B. A., & Fauzi, N. A. B. M. (2021). Bacillus megaterium: A Potential and an Efficient Bio-Degrader of Polystyrene. Braz. Arch. Biol. Technol, e21190321-e21190321.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71

Palmer, K. J., Lauder, K., Christopher, K., Guerra, F., Welch, R., & Bertuccio, A. J. (2022). Biodegradation of Expanded Polystyrene by Larval and Adult Stages of Tenebrio molitor with Varying Substrates and Beddings. Environmental Processes, 9(1), 3. https://doi.org/10.1007/s40710-021-00556-6

Pham, T., Longing, S., & Siebecker, M. (2023). Consumption and degradation of different consumer plastics by mealworms (Tenebrio molitor): Effects of plastic type, time, and mealworm origin. Journal of Cleaner Production, 403, 136842. https://doi.org/10.1016/j.jclepro.2023.136842

Peng, B.-Y., Li, Y., Fan, R., Chen, Z., Chen, J., Brandon, A. M., Criddle, C. S., Zhang, Y., & Wu, W.-M. (2020). Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environmental Pollution, 266, 115206. https://doi.org/10.1016/j.envpol.2020.115206

Peng, B.-Y., Su, Y., Chen, Z., Chen, J., Zhou, X., Benbow, M. E., Criddle, C. S., Wu, W.-M., & Zhang, Y. (2019). Biodegradation of Polystyrene by Dark (Tenebrio obscurus) and Yellow (Tenebrio molitor) Mealworms (Coleoptera: Tenebrionidae). Environmental Science & Technology, 53(9), 5256-5265. https://doi.org/10.1021/acs.est.8b06963

Rana, R., Akram, H., Shirin, S., Biplob, D., Ahmod, M., & Tanwne, S. (2024). Microplastics increase cadmium absorption and impair nutrient uptake and growth in red amaranth (Amaranthus tricolor L.) in the presence of cadmium and biochar. BMC Plant Biology, 24, 608. https://doi.org/10.1186/s12870-024-05312-0

Rosenboom, J.-G., Langer, R., & Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7(2), Article 2. https://doi.org/10.1038/s41578-021-00407-8

Shubham, V., O´Connor, O., Gora, A., Rehman, S., Kiron, V., Siriyappagouder, P., Dahle, D., Kógel, T., Ornsrud, R., & Olsvik, P. (2024). Mixture toxicity of 6PPD-quinone and polystyrene nanoplastics in zebrafish. Environmental Pollution, 348, 123835. https://doi.org/10.1016/j.envpol.2024.123835

Sufang, Z., Renju, L., Shiwei, L., Benjuan, Z., Juan, W., & Zongze, S. (2024). Polystyrene-degrading bacteria in the gut microbiome of marine benthic polychaetes support enhanced digestion of plastic fragments. Communications Earth and Environment, 5(162). https://doi.org/10.1038/s43247-024-01318-6

Tang, Z.-L., Kuo, T.-A., & Liu, H.-H. (2017). The Study of the Microbes Degraded Polystyrene. Advances in Technology Innovation, 2(1), Article 1.

Tsochatzis, E., Berggreen, I. E., Tedeschi, F., Ntrallou, K., Gika, H., & Corredig, M. (2021). Gut Microbiome and Degradation Product Formation during Biodegradation of Expanded Polystyrene by Mealworm Larvae under Different Feeding Strategies. Molecules (Basel, Switzerland), 26(24), 7568. https://doi.org/10.3390/molecules26247568

Urbanek, A. K., Rybak, J., Wróbel, M., Leluk, K., & Mirończuk, A. M. (2020). A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. Environmental Pollution, 262, 114281. https://doi.org/10.1016/j.envpol.2020.114281

Ventura, E., Goncalves, J., Vilke, J., de Errico, G., Benedetti, M., Regolio, F., & Bebianno, M. (2024). Are mixtures of micro/nanoplastics more toxic than individual micro or nanoplastic contamination in the clam Ruditapes decussatus?. Marine Pollution Bulletin, 206, 116697. https://doi.org/10.1016/j.marpolbul.2024.116697

Wang, Q., Chen, H., Gu, W., Wang, S., & Li, Y. (202). Biodegradation of aged polyethylene (PE) and polystyrene (PS) microplastics by yellow mealworms (Tenebrio molitor larvae). Science of The Total Environment, 927, 172243. https://doi.org/10.1016/j.scitotenv.2024.172243

Wang, S., Shi, W., Huang, Z., Zhou, N., Xie, Y., Tang, Y., Hu, F., Liu, G., & Zheng, H. (2022). Complete digestion/biodegradation of polystyrene microplastics by greater wax moth (Galleria mellonella) larvae: Direct in vivo evidence, gut microbiota independence, and potential metabolic pathways. Journal of Hazardous Materials, 423, 127213. https://doi.org/10.1016/j.jhazmat.2021.127213

Wang, S., Yu, H., Li, W., Song, E., Zhao, Z., Xu, J., Gao, S., Wang, D., & Xie, Z. (2024). Biodegradation of four polyolefin plastics in superworms (Larvae of Zophobas atratus) and effects on the gut microbiome. Journal of Hazardous Materials, 477, 135381. https://doi.org/10.1016/j.jhazmat.2024.135381

Wang, Z., Xin, X., Shi, X., & Zhang, Y. (2020). A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum. The Science of the Total Environment, 726, 138564. https://doi.org/10.1016/j.scitotenv.2020.138564

Woo, S., Song, I., & Cha, H. J. (2020). Fast and Facile Biodegradation of Polystyrene by the Gut Microbial Flora of Plesiophthalmus davidis Larvae. Applied and Environmental Microbiology, 86(18), e01361-20. https://doi.org/10.1128/AEM.01361-20

Yang, L., Gao, J., Liu, Y., Zhuang, G., Peng, X., Wu, W.-M., & Zhuang, X. (2021). Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere, 262, 127818. https://doi.org/10.1016/j.chemosphere.2020.127818

Yang, S.-S., Brandon, A. M., Andrew Flanagan, J. C., Yang, J., Ning, D., Cai, S.-Y., Fan, H.-Q., Wang, Z.-Y., Ren, J., Benbow, E., Ren, N.-Q., Waymouth, R. M., Zhou, J., Criddle, C. S., & Wu, W.-M. (2018). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191, 979-989. https://doi.org/10.1016/j.chemosphere.2017.10.117

Yang, S.-S., Wu, W.-M., Brandon, A. M., Fan, H.-Q., Receveur, J. P., Li, Y., Wang, Z.-Y., Fan, R., McClellan, R. L., Gao, S.-H., Ning, D., Phillips, D. H., Peng, B.-Y., Wang, H., Cai, S.-Y., Li, P., Cai, W.-W., Ding, L.-Y., Yang, J., … Criddle, C. S. (2018). Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere, 212, 262-271. https://doi.org/10.1016/j.chemosphere.2018.08.078

Yang, Y., Wang, J., & Xia, M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of The Total Environment, 708, 135233. https://doi.org/10.1016/j.scitotenv.2019.135233

Yang, X., Wen, P., Yang, Y., Jia, P., Li, W., & Pei, D. (2023). Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1001750

Yang, Y., Yang, J., Wu, W.-M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015a). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environmental Science & Technology, 49(20), 12080-12086. https://doi.org/10.1021/acs.est.5b02661

Yang, Y., Yang, J., Wu, W.-M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015b). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. Environmental Science & Technology, 49(20), 12087-12093. https://doi.org/10.1021/acs.est.5b02663

Ying, H., Jiang, S., Zhang, Q., Zhou, W., Liang, J., Xu, Y., & Su, W. (2024). Protective effect of Cordycepin on blood-testis barrier against pre-puberty polystyrene nanoplastics exposure in male rats. Particle and Fibre Toxicology, 21 (1): 30. https://doi.org/10.1186/s12989-024-00590-w

Yolanda, D., Anggiani, M., Agung, M., Anggraeni, S., & Afianti, N. (2024). Polystyrene microplastics degradation by microbial consortium from jakarta bay. Environmental Quality Management, 34(1), e22291. https://doi: 10.1002/tqem.22291

Yoon, J., Kim, B., & Kim, K. (2024). Distribution of microplastics in soil by types of land use in metropolitan area of Seoul. Applied Biological Chemistry, 67(15). https://doi.org/10.1186/s13765-024-00869-8

Young, R., Ahmed, K., Court, L., Castro, C., Marcora, A., Boctor, J., Paull, C., Wijffels, G., Rane, R., Edwards, O., Walsh, T., & Pandey, G. (2024). Improved reference quality genome sequence of the plastic-degrading greater wax moth, Galleria mellonella. G3(bethesda), 14(6), jkae070. https://doi: 10.1093/g3journal/jkae070

Yue, X., Xiu, C., Zhang, M., Hou, W., Chong, Z., Jia, L., Da-Lei, Z., Liao, H., Yan, C., Jian, H., Tao, L., & Li-Ping, Z. (2024). Polystyrene nanoplastics induce apoptosis, autophagy, and steroido-genesis disruption in granulosa cells to reduce oocyte quality and fertility by inhibiting the PI3K/AKT pathway in female mice. Journal of Nanobiotechnology, 22(1), 460. https://doi.org/10.1186/s12951-024-02735-7.

Zhen, Z., Wenrui, S., Peiwen, Y., Shixiu, W., Liming, C., Zhaowen, C., Liang, L., Faisal, K., Menghong, H., Rong, X., & Youji, W. (2024). Bio-based microplastic polylactic acid exerts the similar toxic effects to traditional petroleum-based microplastic polystyrene in mussels. Science Total Environmental, 10, 946, 174386. https://doi: 10.1016/j.scitotenv.2024.174386.

Zhuang, H., Zhenxia, L., Menglin, W., Bo, L., Yiwen, C., & Ziyu, L. (2024). Effects of microplastics and combined pollution of polystyrene and di-n-octyl phthalate on photosynthesis of cucumber (Cucumis sativus L.). Science of the Total Environment, 947, 174426. https://doi.org/10.1016/j.scitotenv.2024.174426

Descargas

Publicado

08/31/2024

Número

Sección

ARTÍCULO ORIGINAL

Cómo citar

Degradación del poliestireno por insectos y microorganismos asociados: Análisis bibliométrico y una revisión narrativa de las técnicas utilizadas en la caracterización. (2024). Manglar, 21(3), 359-370. https://doi.org/10.57188/manglar.2024.039

Artículos más leídos del mismo autor/a