¿Pueden las leguminosas ser una alternativa económica y sostenible en la nutrición apícola para mejorar la producción de colmenas?

Autores/as

DOI:

https://doi.org/10.57188/

Palabras clave:

Leguminosas, nutrición apícola, Apis mellifera, sostenibilidad, producción de colmenas

Resumen

La apicultura es fundamental para la polinización de cultivos y la producción de miel, pero enfrenta desafíos relacionados con la nutrición de las abejas, especialmente en épocas de escasez floral. Las leguminosas representan una posible alternativa económica y sostenible para suplir las necesidades nutricionales de las colmenas, debido a su alto contenido en proteínas y su rol en la mejora de la calidad del suelo. Este artículo explora el potencial de las leguminosas en la dieta apícola, analizando su impacto en la salud y productividad de las colmenas, así como su viabilidad como una solución sostenible. A través de una revisión de estudios recientes, se evalúan los beneficios y limitaciones de las leguminosas en la nutrición apícola, proponiéndolas como una alternativa que puede contribuir al desarrollo sustentable de la apicultura.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Nikol Siche, Escuela de Ingeniería Zootecnista, Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Trujillo, Perú.

    La apicultura es fundamental para la polinización de cultivos y la producción de miel, pero enfrenta desafíos relacionados con la nutrición de las abejas, especialmente en épocas de escasez floral. Las leguminosas representan una posible alternativa económica y sostenible para suplir las necesidades nutricionales de las colmenas, debido a su alto contenido en proteínas y su rol en la mejora de la calidad del suelo. Este artículo explora el potencial de las leguminosas en la dieta apícola, analizando su impacto en la salud y productividad de las colmenas, así como su viabilidad como una solución sostenible. A través de una revisión de estudios recientes, se evalúan los beneficios y limitaciones de las leguminosas en la nutrición apícola, proponiéndolas como una alternativa que puede contribuir al desarrollo sustentable de la apicultura.

Referencias

Ahmad, S., Khan, K. A., Khan, S. A., Ghramh, H. A., & Gul, A. (2021). Comparative assessment of various supplementary diets on commercial honey bee (Apis mellifera) health and colony performance. Plos One, 16(10). doi: https://doi.org/10.1371/journal.pone.0258430

Al-Kahtani, S. N., Taha, E., Khan, K. A., Ansari, M. J., Farag, S. A., Shawer, D. M. B., & Elnabawy, E. M. (2020). Effect of harvest season on the nutritional value of bee pollen protein. Plos One, 15(12). doi: https://doi.org/10.1371/journal.pone.0241393

Alshukri, B. M., & Talib, M. (2021). Reduced deformed wing virus of Apis mellifera L. nurses by high fat diets under laboratory conditions. Journal of Plant Protection Research, 61(1), 57–62. doi: https://doi.org/10.24425/jppr.2021.136269

Bakour, M., Laaroussi, H., Ousaaid, D., Ghouizi, A. E., Es-Safi, I., Mechchate, H., & Lyoussi, B. (2022). Bee bread as a promising source of bioactive molecules and functional properties: An Up-To-Date Review. Antibiotics, 11(2), 203. doi: https://doi.org/10.3390/antibiotics11020203

Baky, M. H., Abouelela, M. B., Wang, K., & Farag, M. A. (2023). Bee Pollen and Bread as a Super-Food: A Comparative review of their metabolome composition and quality assessment in the context of best recovery conditions. Molecules, 28(2), 715. doi: https://doi.org/10.3390/molecules28020715

Braglia, C., Alberoni, D., Di Gioia, D., Giacomelli, A., Bocquet, M., & Bulet, P. (2024). Application of a robust MALDI mass spectrometry approach for bee pollen investigation. Analytical and Bioanalytical Chemistry, 416(19), 4315–4324. https://doi.org/10.1007/s00216-024-05368-9

Bogo, G., Bortolotti, L., Sagona, S., Felicioli, A., Galloni, M., Barberis, M., & Nepi, M. (2019). Effects of Non-Protein amino acids in nectar on bee survival and behavior. Journal of Chemical Ecology, 45(3), 278–285. doi: https://doi.org/10.1007/s10886-018-01044-2

Brodschneider, R., & Gratzer, K. (2021). The FAO Guideline on Good Beekeeping Practices for Sustainable Apiculture. Bee World, 98(4), 144. doi: https://doi.org/10.1080/0005772x.2021.1981664

Cala, M. (2021). Investigación de dos dietas proteicas para desarrollo de núcleos y colmenas de abejas (Apis mellífera) en Hato Santander año 2021 [Trabajo de grado, Universidad Industrial de Santander]. https://noesis.uis.edu.co/handle/20.500.14071/9783

Calderón-Fallas, R. A., Van Veen, J. W., Olate-Olave, V. R., Verde, M., Doorn, M., Vallejos, L., & Orozco-Delgado, J. V. (2024). Africanized honey bee colonies in Costa Rica: first evidence of its management, brood nest structure and factors associated with varroa mite infestation. Experimental and Applied Acarology, 92(3), 369–384. https://doi.org/10.1007/s10493-023-00897-x

Chau, K. D., & Rehan, S. M. (2024). Nutritional profiling of common eastern North American pollen species with implications for bee diet and pollinator health. Apidologie, 55(1). https://doi.org/10.1007/s13592-023-01054-4

Choi, J. (2021). Nutrition, Safety, Health Functional Effects, and Availability of Honeybee (Apis mellifera L.) Drone Pupae. Insects, 12(9), 771. https://doi.org/10.3390/insects12090771

Chávez, J. P. A., Cruz, M. V. C., Cedeño, E. D. P., & Moreira, J. S. M. (2022). Suplementación de levadura de Cerveza (Saccharomyces cerevisiae) dentro de la alimentación proteica en abejas (Apis mellifera) en el cantón Quininde parroquia Rosa Zárate. Tierra Infinita, 8(1), 108–119. https://doi.org/10.32645/26028131.1156

Da Costa, M. M., Brito, E. R., Santos, J. a. D., Modesto, V. C., Lima, M. V. D. S., Pinheiro, E. E. G., Farias, L. D. S., Silva, I. P., Da Silva, S. M. P. C., De Carvalho, C. a. L., & Da Silva Sodré, G. (2024). Influência da suplementação alimentar na prevalência de parasitos e patógeno em colônias de Apis mellifera africanizada. Scientia Plena, 20(5). https://doi.org/10.14808/sci.plena.2024.058002

Da Silva, R. A., De Araújo, T. S., De Andrade, A. B. A., Coelho, M. S., & De Oliveira, G. L. G. (2019). Fontes energéticas sobre a longevidade de Apis mellifera L. em condições controladas. ACTA Apicola Brasilica, 7. https://doi.org/10.18378/aab.v7i0.7545

Darwish, A., El-Wahed, A. A., Shehata, M., El-Seedi, H., Masry, S., Khalifa, S., Mahfouz, H., & El-Sohaimy, S. (2022). Chemical profiling and nutritional evaluation of bee pollen, bee bread, and royal jelly and their role in functional fermented dairy products. Molecules, 28(1), 227. https://doi.org/10.3390/molecules28010227

Davodpour, R., Sobhanardakani, S., Cheraghi, M., Abdi, N., & Lorestani, B. (2019). Honeybees (Apis mellifera L.) as a Potential Bioindicator for Detection of Toxic and Essential Elements in the Environment (Case Study: Markazi Province, Iran). Archives Of Environmental Contamination And Toxicology, 77(3), 344-358. https://doi.org/10.1007/s00244-019-00634-9

De Sousa Gomes, R. V. R., Rocha, L. B., De Miranda, M. E., De Lima Filho, E. N., De Albuquerque, J. G. S. S., & Sombra, D. S. (2019). Manutenção de colônias Apis mellifera no período de escassez de alimento. Revista Verde De Agroecologia E Desenvolvimento Sustentável, 14(3), 458–463. https://doi.org/10.18378/rvads.v14i3.6486

De Souza Zangirolami, M., & De Oliveira Santos, O., Junior. (2022). Organização, necessidades nutricionais e suplementação artificial para abelhas Apis Mellifera. Research Society and Development, 11(9). https://doi.org/10.33448/rsd-v11i9.31453

De Souza, E. P., Degrande, P. E., Guazina, R. A., & Alves, V. V., Junior. (2020). Exposure of Apis mellifera (Hymenoptera: Apidae) to pollen grains of soybean plants (Glycine max L.) originated from treated seeds. Arquivos Do Instituto Biológico, 87. https://doi.org/10.1590/1808-1657000392019

Doi, I., Deng, W., & Ikegami, T. (2023). Spontaneous and information-induced bursting activities in honeybee hives. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-37785-8

Dżugan, M., Sidor, E., Miłek, M., & Tomczyk, M. (2023). The possibility of using Bee drone brood to design novel dietary supplements for apitherapy. Applied Sciences, 13(8), 4687. https://doi.org/10.3390/app13084687

El-Seedi, H. R., El-Wahed, A. a. A., Salama, S., Agamy, N., Altaleb, H. A., Du, M., Saeed, A., Di Minno, A., Wang, D., Daglia, M., Guo, Z., Zhang, H., & Khalifa, S. a. M. (2024). Natural Remedies and Health; A review of bee pollen and bee bread impact on combating diabetes and obesity. Current Nutrition Reports. https://doi.org/10.1007/s13668-024-00567-3

Ghosh, S., Jeon, H., & Jung, C. (2020). Foraging behaviour and preference of pollen sources by honey bee (Apis mellifera) relative to protein contents. Journal of Ecology and Environment, 44(1). https://doi.org/10.1186/s41610-020-0149-9

Iorizzo, M., Albanese, G., Letizia, F., Testa, B., Di Criscio, D., Petrarca, S., Di Martino, C., Ganassi, S., Avino, P., Pannella, G., Aturki, Z., Tedino, C., & De Cristofaro, A. (2024). Diversity of plant pollen sources, microbial communities, and phenolic compounds present in bee pollen and bee bread. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-024-34517-x

Júnior, D. J. D. M., Da Silva, E. M., Aguiar, I. F., De Alcântara, J. F. A., Barbosa, E. A., Neves, J. M. G., & De Oliveira, A. M. (2023). Alimentação proteica alternativa na manutenção e desenvolvimento de colmeias de abelhas Apis mellifera. Recital - Revista De Educação Ciência E Tecnologia De Almenara/MG, 5(1), 75–86. https://doi.org/10.46636/recital.v5i1.317

Kokkorou, M., Spinelli, S., Dinnella, C., Pierguidi, L., Wollgast, J., Maragkoudakis, P., & Monteleone, E. (2025). Co-creating innovative and accepted legume-based dishes for school canteens with adolescents in a low socioeconomic area. Food Quality and Preference, 123(105343). https://doi.org/10.1016/j.foodqual.2024.105343

Lamontagne-Drolet, M., Samson-Robert, O., Giovenazzo, P., & Fournier, V. (2019). The Impacts of Two Protein Supplements on Commercial Honey Bee (Apis mellifera L.) Colonies. Journal of Apicultural Research, 58(5), 800–813. https://doi.org/10.1080/00218839.2019.1644938

Langlands, Z., Du Rand, E., Crailsheim, K., Yusuf, A., & Pirk, C. (2021). Prisoners receive food fit for a queen: Honeybees feed small hive beetles protein-rich glandular secretions through trophallaxis. Journal of Experimental Biology, 224(2). https://doi.org/10.1242/jeb.234807

Martins, A. C., Proença, C. E. B., Vasconcelos, T. N. C., Aguiar, A. J. C., Farinasso, H. C., De Lima, A. T. F., Faria, J. E. Q., Norrana, K., Costa, M. B. R., Carvalho, M. M., Dias, R. L., Bustamante, M. M. C., Carvalho, F. A., & Keller, A. (2023). Contrasting patterns of foraging behavior in neotropical stingless bees using pollen and honey metabarcoding. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-41304-0

Matos, V. R., Alencar, S. M., & Santos, F. A. (2014). Pollen types and levels of total phenolic compounds in propolis produced by Apis mellifera L. (Apidae) in an area of the Semiarid Region of Bahia, Brazil. Anais Da Academia Brasileira de Ciências, 86(1), 407-418. https://doi.org/10.1590/0001-376520142013-0109

Medina, C. E., Guzmán, E., Saldivar, S., & Aguilera, J. (2018). Effect of three energy-protein diets on the population and honey production of honey bee (Apis mellifera) colonies. Nova Scientia, 10(20), 01-12. https://doi.org/10.21640/ns.v10i20.1110

Miłek, M., Grabek-Lejko, D., Stępień, K., Sidor, E., Mołoń, M., & Dżugan, M. (2021). The enrichment of honey withAronia melanocarpafruits enhances itsin vitroandin vivoantioxidant potential and intensifies its antibacterial and antiviral properties. Food & Function, 12(19), 8920–8931. https://doi.org/10.1039/d1fo02248b

Misiewicz, A., Mikołajczyk, Ł., & Bednarska, A. J. (2023). Floral resources,energetic value and pesticide residues in provisions collected by Osmia bicornis along a gradient of oilseed rape coverage. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-39950-5

Mogren, C. L., Benítez, M., McCarter, K., Boyer, F., & Lundgren, J. G. (2020). Diverging landscape impacts on macronutrient status despite overlapping diets in managed (Apis mellifera) and native (Melissodes desponsa) bees. Conservation Physiology, 8(1). https://doi.org/10.1093/conphys/coaa109

Moniruzzaman, M., Khalil, M. I., Sulaiman, S. A., & Gan, S. H. (2013). Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complementary And Alternative Medicine, 13(1). https://doi.org/10.1186/1472-6882-13-43

Montero, A., Martos, A., & Chura, J. (2012). Dietas artificiales en la crianza de la abeja melífera, Apis mellifera L. Anales Científicos, 73(1), 1–5. https://doi.org/10.21704/ac.v73i1.863

Mora-Adames, W. I., Fuenmayor, C. A., Benavides-Martín, M. A., Algecira-Enciso, N. A., & Quicazán, M. C. (2021). Bee pollen as a novel substrate in pilot-scale probiotic-mediated lactic fermentation processes. LWT, 141, 110868. https://doi.org/10.1016/j.lwt.2021.110868

Natarelli, N., Gahoonia, N., Maloh, J., & Sivamani, R. K. (2023). Clinical efficacy of topical or oral soy supplementation in Dermatology: a Systematic review. Journal of Clinical Medicine, 12(12), 4171. https://doi.org/10.3390/jcm12124171

Nicolson, S. W., Human, H., & Pirk, C. W. W. (2022). Honey bees save energy in honey processing by dehydrating nectar before returning to the nest. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-20626-5

Núñez-Torres, O. P., Almeida-Secaira, R. I., Rosero-Peñaherrera, M. A., & Lozada-Salcedo, E. E. (2017). Fortalecimiento del rendimiento de abejas (Apis mellifera) alimentadas con fuentes proteicas. Journal of the Selva Andina Animal Science, 4(2), 95–103. https://doi.org/10.36610/j.jsaas.2017.040200095

OMSA. (2010, 27 de abril). Los problemas de salud de las abejas dependen de múltiples factores. Organización Mundial de Sanidad Animal. https://www.woah.org/es/los-problemas-de-salud-de-las-abejas-dependen-de-multiples-factores/

Oskay, D. (2019). Effects of diet composition on consumption, live body weight and life span of worker honey bees (Apis mellifera L.). Applied Ecology and Environmental Research, 19(6), 4421–4430. https://doi.org/10.15666/aeer/1906_44214430

Pamminger, T., Becker, R., Himmelreich, S., Schneider, C. W., & Bergtold, M. (2019). Pollen report: quantitative review of pollen crude protein concentrations offered by bee pollinated flowers in agricultural and non-agricultural landscapes. PeerJ, 7. https://doi.org/10.7717/peerj.7394

Paray, B. A., Kumari, I., Hajam, Y. A., Sharma, B., Kumar, R., Albeshr, M. F., Farah, M. A., & Khan, J. M. (2020). Honeybee nutrition and pollen substitutes: A review. Saudi Journal of Biological Sciences, 28(1), 1167–1176. https://doi.org/10.1016/j.sjbs.2020.11.053

Pastor, F. J., & Alcalá, K. (2024). Tortas alimenticias para abejas (Apis mellifera L.) como opción para alimentar en épocas críticas. Revista Colombiana De Ciencia Animal - RECIA, 16(1), Artículo e1043. https://doi.org/10.24188/recia.v16.n1.2024.1043

Pokajewicz, K., Lamaka, D., Hudz, N., Adamchuk, L., & Wieczorek, P. P. (2024). Volatile profile of bee bread. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-57159-y

Poyraz, F., Yalmanci, D., İspirli, H., & Dertli, E. (2023). Characterization of Bee Bread Produced with Defined Starter Cultures Mimicking the Natural Fermentation Process. Fermentation, 9(2), 174. https://doi.org/10.3390/fermentation9020174

Ramello, P. J., Almada, V., Ashworth, L., Alvarez, L. J., & Lucia, M. (2024). Bee size increases pollen deposition in Cucurbita maxima (Cucurbitaceae) crops. Apidologie, 55(2). https://doi.org/10.1007/s13592-024-01065-9

Ranneh, Y., Akim, A. M., Hamid, H. A., Khazaai, H., Fadel, A., Zakaria, Z. A., Albujja, M., & Bakar, M. F. A. (2021). Honey and its nutritional and anti-inflammatory value. BMC Complementary Medicine and Therapies, 21(1). https://doi.org/10.1186/s12906-020-03170-5

Reyes, S. E., & Cano, D. M. (2022). Efectos de la agricultura intensiva y el cambio climático sobre la biodiversidad. Revista De Investigaciones Altoandinas, 24(1). https://doi.org/10.18271/ria.2022.328

Rodríguez, A., Gadea, L., Landero, J., & Hernández, A. (2015). Evaluación de tres suplementos alimenticios en la producción de Apis mellifera en la Agropecuaria los Potrerillos - Jinotega. Revista Científica de la UNAN-León, 6(2), 1–8. https://doi.org/DOI:10.5377/universitas.v6i2.13867

Russo, L., Vaudo, A. D., Fisher, C. J., Grozinger, C. M., & Shea, K. (2019). Bee community preference for an invasive thistle associated with higher pollen protein content. Oecologia, 190(4), 901–912. https://doi.org/10.1007/s00442-019-04462-5

Ríos, I., Acosta, E., Samudio, E., Hruska, A., & Gregolin, A. (2018). Beneficios nutricionales, agroecológicos y comerciales de las legumbres. Revista chilena de nutrición, 45(1), 8–13. https://doi.org/10.4067/S0717-75182018000200008

Shankar, M., Gowthami, R., Tripathi, K., Deepak, D. A., Raghavendra, K. V., & Agrawal, A. (2024). Unveiling reproductive biology, phenology, and pollen viability in Lathyrus species to enhance crop improvement. Genetic Resources and Crop Evolution. https://doi.org/10.1007/s10722-024-02180-3

Shaw, K., Theron, G., Adedoja, O., Bester, C., & Geerts, S. (2023). The importance of wild pollinators for indigenous crop pollination: The case of Cyclopia (honeybush). South African Journal of Botany, 161, 281–292. https://doi.org/10.1016/j.sajb.2023.08.015

Shepel, O. L., Aseeva, T. A., Kondrat’eva, A. Y., Khornyak, M. P., & Gainudinova, N. A. (2023). Screening of Soybean Genetic Diversity for Breeding under Extreme Conditions of the Middle Amur Region. Russian Agricultural Sciences, 49(S2), S271–S281. https://doi.org/10.3103/s1068367423080165

Sonmez, E., Kekecoglu, M., Sahin, H., Bozdeveci, A., & Karaoglu, S. A. (2023). Comparing the biological properties and chemical profiling of chestnut bee pollen and bee bread collected from Anatolia. Brazilian Journal of Microbiology, 54(3), 2307–2317. https://doi.org/10.1007/s42770-023-00980-w

Souza, E. P., Degrande, P. E., Barbosa, V. O., Alves, V. V., Junior, & Malaquias, J. B. (2023). Temporal dynamics of Apis mellifera (Hymenoptera: Apidae) during flowering in indeterminate soybean (Glycine max). Anais Da Academia Brasileira De Ciências, 95(4). https://doi.org/10.1590/0001-3765202320191214

Tawfik, A. I., Ahmed, Z. H., Abdel-Rahman, M. F., & Moustafa, A. M. (2022). Effect of some bee bread quality on protein content and antioxidant system of honeybee workers. International Journal of Tropical Insect Science, 43(1), 93–105. https://doi.org/10.1007/s42690-022-00888-2

Tiong, A., Crawford, S., de Campo, L., Ryukhtin, V., Garvey, C., Batchelor, W., & van ’t Hag, L. (2025). Legume protein gelation: The mechanism behind the formation of homogeneous and fractal gels. Food Hydrocolloids, 159(110639). https://doi.org/10.1016/j.foodhyd.2024.110639

Tsuruda, J. M., Chakrabarti, P., & Sagili, R. R. (2021). Honey Bee Nutrition. Veterinary Clinics of North America Food Animal Practice, 37(3), 505–519. https://doi.org/10.1016/j.cvfa.2021.06.006

Torretta, J. P., Basilio, A. M., Haedo, J. P., & Marrero, H. J. (2024). Nesting Biology of Megachile (Chrysosarus) jenseni (Hymenoptera: Megachilidae) in Two Contrasting Pampean Agroecosystems: A Potential Pollinator for Alfalfa? Neotropical Entomology. https://doi.org/10.1007/s13744-024-01169-y

Vaudo, A. D., Dyer, L. A., & Leonard, A. S. (2024). Pollen nutrition structures bee and plant community interactions. Proceedings of the National Academy of Sciences, 121(3). https://doi.org/10.1073/pnas.2317228120

Vaudo, A. D., Tooker, J. F., Patch, H. M., Biddinger, D. J., Coccia, M., Crone, M. K., Fiely, M., Francis, J. S., Hines, H. M., Hodges, M., Jackson, S. W., Michez, D., Mu, J., Russo, L., Safari, M., Treanore, E. D., Vanderplanck, M., Yip, E., Leonard, A. S., & Grozinger, C. M. (2020). Pollen protein: lipid macronutrient ratios may guide broad patterns of bee species floral preferences. Insects, 11(2), 132. https://doi.org/10.3390/insects11020132

Vieira, A. L. C., Pataca, L. C., Oliveira, R., & Schlindwein, C. (2024). Fields of flowers with few strikes: how oligolectic bees manage their foraging behavior on Calibrachoa elegans (Solanaceae). The Science of Nature, 111(3). https://doi.org/10.1007/s00114-024-01912-w

Wijayati, N., Hardjono, D. S., Rahmawati, M., & Kurniawati, A. (2019). Formulation of winged bean seeds as pollen substitute for outgrowth of honey bees (Apis mellifera L). Journal of Physics Conference Series, 1321(2), 022040. https://doi.org/10.1088/1742-6596/1321/2/022040

Zaluski, R., Bittarello, A. C., Vieira, J. C. S., Braga, C. P., Padilha, P., Fernandes, M., Bovi, T., & Orsi, R. (2020). Modification of the head proteome of nurse honeybees (Apis mellifera) exposed to field-relevant doses of pesticides. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-59070-8

Zhang, G., St Clair, A. L., Dolezal, A. G., Toth, A. L., & O’Neal, M. E. (2021). Can Native Plants Mitigate Climate-related Forage Dearth for Honey Bees (Hymenoptera: Apidae)?. Journal Of Economic Entomology, 115(1), 1-9. https://doi.org/10.1093/jee/toab202

Descargas

Publicado

12/20/2024

Número

Sección

ARTÍCULO DE REVISIÓN

Cómo citar

¿Pueden las leguminosas ser una alternativa económica y sostenible en la nutrición apícola para mejorar la producción de colmenas?. (2024). Manglar, 21(4), 561-570. https://doi.org/10.57188/

Artículos similares

1-10 de 367

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a