Imágenes hiperespectrales en la predicción de las variables fisicoquímicas y mecánicas de jabón a base de aceite residual de uso doméstico

Autores/as

  • Joe Jara-Velez Escuela de Ingeniería Agroindustrial, Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Trujillo, Perú.
  • Jhastin Arturo Florián-Huamán Escuela de Ingeniería Agroindustrial, Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Trujillo, Perú.
  • David A. Callirgos-Romero Universidade Federal de Pelotas (UFPel) - Departamento de Ciência e Tecnologia de Alimentos, Faculdade de Agronomia Eliseu Maciel, Brasil.

DOI:

https://doi.org/10.57188/manglar.2025.056

Palabras clave:

imágenes hiperespectrales, espectroscopía, modelación, regresión lineal múltiple, optimización

Resumen

El objetivo del presente estudio fue predecir mediante imágenes hiperespectrales las variables fisicoquímicas y mecánicas de jabones elaborados a partir del aceite residual. Se aplicó un diseño experimental Delineamiento Compuesto Central Rotacional a las variables independientes tiempo de calentamiento, relación solución NaCl/aceite y agitación durante el tiempo de saponificación y teniendo como variable dependiente el pH, dureza, adhesividad y elasticidad. Paralelamente se utilizó la tecnología de imágenes hiperespectrales en modo de reflectancia (896 - 1704 nm) sobre cada tratamiento. Los datos espectrales se correlacionaron con los datos experimentales utilizando modelos PLSR, PCR y MLR. Los modelos MLR presentaron mejor nivel predictivo (R2 de 99,9%, 95,2%, 82,9% y 84,6%, respectivamente para cada variable dependiente). Del procedimiento de optimización, se encontró que, con 5,9495 min de agitación, 0,75 de relación solución NaCl/aceite y 718,182 rpm de agitación durante el proceso de saponificación, se tiene un jabón parecido al comercial.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Abrante-Pascual, S., Nieva-Echevarría, B., & Goicoechea-Oses, E. (2024). Vegetable oils and their use for frying: a review of their compositional differences and degradation. Foods, 13(24), 4186. https://doi.org/10.3390/foods13244186

Ajikumar, N., Ramanathan, S., Ragupathy, D., & Ramesh, M. (2025). Quick and reagent-free monitoring of edible oil adulteration: A comprehensive review. Food Chemistry, 450, 138765. https://doi.org/10.1016/j.foodchem.2025.138765

Alsalhi, A., Al-Ali, A., Al-Shamsi, A., & Al-Marzooqi, F. (2024). Exploring pH levels and environmental impacts on personal care products. International Journal of Environmental Research and Public Health, 21(2), 123. https://doi.org/10.3390/ijerph21020123

Aredo, V., Velásquez, L., Carranza-Cabrera, J., & Siche, R. (2019). Predicting of the quality attributes of orange fruit using hyperspectral images. Journal of Food Quality and Hazards Control 6, 82-92. https://doi.org/10.18502/jfqhc.6.3.1381

Barreto, M. A. P., Johansen, K., Angel, Y., & McCabe, M. F. (2019). Radiometric assessment of a UAV-based push-broom hyperspectral camera. Sensors, 19(21), 4699. https://doi.org/10.3390/s19214699

Cheng, H. (2021). Functional Cellulosic Porous Materials: Structure Design, Surface Engineering, and Applications. https://doi.org/10.3990/1.9789036552660

Chen, J., Zhang, L., Guo, X., Qiang, J., Cao, Y., Zhang, S., & Yu, X. (2025). Influence of frying conditions on quality attributes of frying oils: Kinetic investigation of polar compounds. Food Chemistry: X, 29, 102673. https://doi.org/10.1016/j.fochx.2025.102673

Dastidar, S. G., Yarovoy, Y., Leopoldino, S. R., Agarwal, P., Ghosh, C., Bangal, A., ... & Raut, J. S. (2023). Revisiting the role of total fatty matter in soap bars. Journal of Surfactants and Detergents, 26(6), 797-806. https://doi.org/10.1002/jsde.12699

Fan, S., Lu, H., & Huang, M. (2022). Hyperspectral imaging combined with chemometrics to visualize moisture and chemical composition in food products. Food Analytical Methods, 15(6), 1614–1626. https://doi.org/10.1007/s12161-022-02361-9

Gama, T., Farrar, M. B., Tootoonchy, M., Wallace, H. M., Trueman, S. J., Tahmasbian, I., & Bai, S. H. (2024). Hyperspectral imaging predicts free fatty acid levels, peroxide values, and linoleic acid and oleic acid concentrations in tree nut kernels. LWT, 199, 116068. https://doi.org/10.1016/j.lwt.2024.116068

Haughey, S. A., Montgomery, H., Moser, B., Logan, N., & Elliott, C. T. (2023). Utilization of hyperspectral imaging with chemometrics to assess beef maturity. Foods, 12(24), 4500. https://doi.org/10.3390/foods12244500

Hawkins, S., Dasgupta, B. R., & Ananthapadmanabhan, K. P. (2021). Role of pH in skin cleansing. International Journal of Cosmetic Science, 43(4), 474-483. https://doi.org/10.1111/ics.12721

He, H., Li, Z., Qin, Q., Yu, Y., Guo, Y., Cai, S., & Li, Z. (2025). Spectroscopic and Imaging Technologies Combined with Machine Learning for Intelligent Perception of Pesticide Residues in Fruits and Vegetables. Foods, 14(15), 2679. https://doi.org/10.3390/foods14152679

Hou, S. J., Cheng, K. C., Lin, S. H., Hsiao, I. L., Santoso, S. P., Singajaya, S., ... & Lin, S. P. (2024). Improvement of extracellular polysaccharides production from Cordyceps militaris immobilized alginate beads in repeated-batch fermentation. LWT, 193, 115752. https://doi.org/10.1016/j.lwt.2024.115752

ISO. (2020). ISO 660: Animal and vegetable fats and oils—Determination of acid value and acidity. Geneva: International Organization for Standardization.

ISO. (2020). ISO 3657: Animal and vegetable fats and oils—Determination of saponification value. Geneva: International Organization for Standardization.

ISO. (2020). ISO 758: Liquid chemical products—Determination of density by the hydrometer method. Geneva: International Organization for Standardization.

ISO. (2023). ISO 4561: Soaps—Determination of free alkali and free fatty acids. Geneva: International Organization for Standardization.

ISO. (1978). ISO 672: Soaps—Determination of moisture and volatile matter content—Oven method. Geneva: International Organization for Standardization. https://www.iso.org/standard/4837.html?utm_source=chatgpt.com

Jara-Vélez, J., Siche, R., Velásquez-Barreto, F. F., Salazar-Campos, O., Lopez, Y., & Salazar-Campos, J. (2025). Analytical optimisation of eco-friendly soap production using hyperspectral imaging and chemometric modelling of physicochemical properties. Microchemical Journal, 215, 114259. https://doi.org/10.1016/j.microc.2025.114259

Kharbach, M., Alaoui Mansouri, M., Taabouz, M., & Yu, H. (2023). Current application of advancing spectroscopy techniques in food analysis: data handling with chemometric approaches. Foods, 12(14), 2753. https://doi.org/10.3390/foods12142753

Lee, J. B., Bae, Y. J., Kwon, G. Y., Sohn, S. K., Lee, H. R., Kim, H. J., ... & Shim, K. B. (2025). Short-Wave Infrared Hyperspectral Image-Based Quality Grading of Dried Laver (Pyropia spp.). Foods, 14(3), 497. https://doi.org/10.10.3390/foods14030497

Li, X., Fu, X., & Li, H. (2024). A CARS-SPA-GA feature wavelength selection method based on hyperspectral imaging with potato leaf disease classification. Sensors, 24(20), 6566. https://doi.org/10.3390/s24206566

Mahmud, N., Islam, J., Oyom, W., Adrah, K., Adegoke, S. C., & Tahergorabi, R. (2023). A review of different frying oils and oleogels as alternative frying media for fat-uptake reduction in deep-fat fried foods. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e22863

Manzoor, S., Masoodi, F. A., Rashid, R., Ahmad, M., & Kousar, M. U. (2022). Quality assessment and degradative changes of deep-fried oils in street-fried food chain of Kashmir, India. Food Control, 141, 109184. https://doi.org/10.1016/j.foodcont.2022.109184 hh.alma.exlibrisgroup.com

Maotsela, T., Danha, G., & Muzenda, E. (2019). Utilization of Waste Cooking Oil and Tallow for Production of Toilet “Bath” Soap. Procedia Manufacturing, 35, 541-545. https://doi.org/10.1016/j.promfg.2019.07.008

Marín-Méndez, J. J., Esplandiú, P. L., Alonso-Santamaría, M., Remirez-Moreno, B., Del Castillo, L. U., Dublán, J. E., ... & Sáiz-Abajo, M. J. (2024). Hyperspectral imaging as a non-destructive technique for estimating the nutritional value of food. Current Research in Food Science, 9, 100799. https://doi.org/10.1016/j.crfs.2024.100799

Medina–García, M., Amigo, J. M., Martínez-Domingo, M. A., Valero, E. M., & Jiménez–Carvelo, A. M. (2025). Strategies for analysing hyperspectral imaging data for food quality and safety issues–A critical review of the last 5 years. Microchemical Journal, 214, 113994. https://doi.org/10.1016/j.microc.2025.113994

Nikzadfar, M., Rashvand, M., Zhang, H., Shenfield, A., Genovese, F., Altieri, G., ... & Di Renzo, G. C. (2024). Hyperspectral imaging aiding artificial intelligence: A reliable approach for food qualification and safety. Applied Sciences, 14(21), 9821. https://doi.org/10.3390/app14219821

Olu-Arotiowa, O. A., Odesanmi, A. A., Adedotun, B. K., Ajibade, O. A., Olasesan, I. P., Odofin, O. I., & Abass, A. O. (2022). Review on environmental impact and valourization of waste cooking oil. LAUTECH Journal of Engineering and Technology, 16(1), 144-163.

Pasquini, C. (2018). Near infrared spectroscopy: A mature analytical technique with new perspectives–A review. Analytica chimica acta, 1026, 8-36. https://doi.org/10.1016/j.aca.2018.04.004

Park, J.-M., Koh, J.-H., & Kim, J.-M. (2020). Determining the reuse of frying oil for fried sweet and sour pork according to type of oil and frying time. Food Science of Animal Resources, 40(5), 785–794. https://doi.org/10.5851/kosfa.2020.e54

Patel, D., Bhise, S., Kapdi, S. S., & Bhatt, T. (2024). Non-destructive hyperspectral imaging technology to assess the quality and safety of food: A review. Food Production, Processing and Nutrition, 6(1), 69. https://doi.org/10.1186/s43014-024-00246-4

Pesce, L. (2024). Machine Learning for Predicting Grape Quality Using Spectral Imaging Techniques (Doctoral dissertation, Politecnico di Torino). https://webthesis.biblio.polito.it/34088/

Pillay, R., Hardeberg, J. Y., & George, S. (2019). Hyperspectral imaging of art: Acquisition and calibration workflows. Journal of the American Institute for Conservation, 58(1-2), 3-15. https://doi.org/10.1080/01971360.2018.1549919

Rogers, M., Blanc-Talon, J., Urschler, M., & Delmas, P. (2023). Wavelength and texture feature selection for hyperspectral imaging: a systematic literature review. Journal of Food Measurement and Characterization, 17(6), 6039-6064. https://doi.org/10.1007/s11694-023-02044-x

Poljšak, N., & Kočevar Glavač, N. (2024). Analytical evaluation and antioxidant activity of selected vegetable oils to support evidence-based use in dermal products. Natural Product Communications, 19(10), 1934578X241281245. https://doi.org/10.1177/1934578X241281245

Roman-Lara, M. M., & Chong, K. J. (2025). A miniaturized iodine value assay for quantifying the unsaturated fatty acid content of lipids, lipid mixtures, and biological membranes. Lipids, 60(5), e12438. https://doi.org/10.1002/lipd.12438

Samrat, N. H., Johnson, J. B., White, S., Naiker, M., & Brown, P. (2022). A rapid non-destructive hyperspectral imaging data model for the prediction of pungent constituents in dried ginger. Foods, 11(5), 649. https://doi.org/10.3390/foods11050649

Sarkar, R., Pal, A., Rakshit, A., & Saha, B. (2021). Properties and applications of amphoteric surfactant: A concise review. Journal of Surfactants and Detergents, 24(5), 709-730. https://doi.org/10.1002/jsde.12542

Shaikh, M. S., Jaferzadeh, K., Thörnberg, B., & Casselgren, J. (2021). Calibration of a hyper-spectral imaging system using a low-cost reference. Sensors, 21(11), 3738. https://doi.org/10.3390/s21113738

Tawo, O. E., & Mbamalu, M. I. (2025). Advancing waste valorization techniques for sustainable industrial operations and improved environmental safety. Int. J. Sci. Res. Arch, 14(02), 127-149. https://doi.org/10.10.30574/ijsra.2025.14.2.0334

Uduma, U. A., Isah, A. N., Zauro, S. A., & Yakubu, M. (2025). Production and analysis of laundry soaps from blended oils (palm kernel oil, palm stearin, beef tallow, and cottonseed oil). FUDMA Journal of Sciences, 19(1), 45–55. https://doi.org/10.33003/fjs-2025-0904-3600

UN-Habitat. (2020). Solid Waste Management. UN-Habitat Knowledge & Innovation. https://unhabitat.org/topic/solid-waste-management?utm_source=chatgpt.com

United Nations Environment Programme (UNEP). (2024). Global Waste Management Outlook 2024 (GWMO 2024). https://doi.org/10.59117/20.500.11822/44939

Zhang, G., & Abdulla, W. (2023). Explainable AI-driven wavelength selection for hyperspectral imaging of honey products. Food Chemistry Advances, 3, 100491. https://doi.org/10.1109/JSTARS.2023.3312345

Zhang, L., Gao, X., & Sun, D.-W. (2023). Visualization of food internal quality attributes by hyperspectral imaging coupled with multivariate regression and deep learning. Food Control, 151, 109884. https://doi.org/10.1016/j.foodcont.2023.109884

Zuo, J., Peng, Y., Li, Y., Chen, Y., & Yin, T. (2024). Advancements in Hyperspectral Imaging for Assessing Nutritional Parameters in Muscle Food: Current Research and Future Trends. Journal of Agricultural and Food Chemistry, 73(1), 85-99. https://doi.org/10.1016/j.microc.2025.113994

Descargas

Archivos adicionales

Publicado

12/16/2025

Número

Sección

Artículo original

Cómo citar

Jara-Velez, J., Florián-Huamán, J. A., & Callirgos-Romero, D. A. (2025). Imágenes hiperespectrales en la predicción de las variables fisicoquímicas y mecánicas de jabón a base de aceite residual de uso doméstico. Manglar, 22(4), 563-580. https://doi.org/10.57188/manglar.2025.056

Artículos más leídos del mismo autor/a