Imágenes hiperespectrales en la predicción de las variables fisicoquímicas y mecánicas de jabón a base de aceite residual de uso doméstico
DOI:
https://doi.org/10.57188/manglar.2025.056Palabras clave:
imágenes hiperespectrales, espectroscopía, modelación, regresión lineal múltiple, optimizaciónResumen
El objetivo del presente estudio fue predecir mediante imágenes hiperespectrales las variables fisicoquímicas y mecánicas de jabones elaborados a partir del aceite residual. Se aplicó un diseño experimental Delineamiento Compuesto Central Rotacional a las variables independientes tiempo de calentamiento, relación solución NaCl/aceite y agitación durante el tiempo de saponificación y teniendo como variable dependiente el pH, dureza, adhesividad y elasticidad. Paralelamente se utilizó la tecnología de imágenes hiperespectrales en modo de reflectancia (896 - 1704 nm) sobre cada tratamiento. Los datos espectrales se correlacionaron con los datos experimentales utilizando modelos PLSR, PCR y MLR. Los modelos MLR presentaron mejor nivel predictivo (R2 de 99,9%, 95,2%, 82,9% y 84,6%, respectivamente para cada variable dependiente). Del procedimiento de optimización, se encontró que, con 5,9495 min de agitación, 0,75 de relación solución NaCl/aceite y 718,182 rpm de agitación durante el proceso de saponificación, se tiene un jabón parecido al comercial.
Descargas
Referencias
Abrante-Pascual, S., Nieva-Echevarría, B., & Goicoechea-Oses, E. (2024). Vegetable oils and their use for frying: a review of their compositional differences and degradation. Foods, 13(24), 4186. https://doi.org/10.3390/foods13244186
Ajikumar, N., Ramanathan, S., Ragupathy, D., & Ramesh, M. (2025). Quick and reagent-free monitoring of edible oil adulteration: A comprehensive review. Food Chemistry, 450, 138765. https://doi.org/10.1016/j.foodchem.2025.138765
Alsalhi, A., Al-Ali, A., Al-Shamsi, A., & Al-Marzooqi, F. (2024). Exploring pH levels and environmental impacts on personal care products. International Journal of Environmental Research and Public Health, 21(2), 123. https://doi.org/10.3390/ijerph21020123
Aredo, V., Velásquez, L., Carranza-Cabrera, J., & Siche, R. (2019). Predicting of the quality attributes of orange fruit using hyperspectral images. Journal of Food Quality and Hazards Control 6, 82-92. https://doi.org/10.18502/jfqhc.6.3.1381
Barreto, M. A. P., Johansen, K., Angel, Y., & McCabe, M. F. (2019). Radiometric assessment of a UAV-based push-broom hyperspectral camera. Sensors, 19(21), 4699. https://doi.org/10.3390/s19214699
Cheng, H. (2021). Functional Cellulosic Porous Materials: Structure Design, Surface Engineering, and Applications. https://doi.org/10.3990/1.9789036552660
Chen, J., Zhang, L., Guo, X., Qiang, J., Cao, Y., Zhang, S., & Yu, X. (2025). Influence of frying conditions on quality attributes of frying oils: Kinetic investigation of polar compounds. Food Chemistry: X, 29, 102673. https://doi.org/10.1016/j.fochx.2025.102673
Dastidar, S. G., Yarovoy, Y., Leopoldino, S. R., Agarwal, P., Ghosh, C., Bangal, A., ... & Raut, J. S. (2023). Revisiting the role of total fatty matter in soap bars. Journal of Surfactants and Detergents, 26(6), 797-806. https://doi.org/10.1002/jsde.12699
Fan, S., Lu, H., & Huang, M. (2022). Hyperspectral imaging combined with chemometrics to visualize moisture and chemical composition in food products. Food Analytical Methods, 15(6), 1614–1626. https://doi.org/10.1007/s12161-022-02361-9
Gama, T., Farrar, M. B., Tootoonchy, M., Wallace, H. M., Trueman, S. J., Tahmasbian, I., & Bai, S. H. (2024). Hyperspectral imaging predicts free fatty acid levels, peroxide values, and linoleic acid and oleic acid concentrations in tree nut kernels. LWT, 199, 116068. https://doi.org/10.1016/j.lwt.2024.116068
Haughey, S. A., Montgomery, H., Moser, B., Logan, N., & Elliott, C. T. (2023). Utilization of hyperspectral imaging with chemometrics to assess beef maturity. Foods, 12(24), 4500. https://doi.org/10.3390/foods12244500
Hawkins, S., Dasgupta, B. R., & Ananthapadmanabhan, K. P. (2021). Role of pH in skin cleansing. International Journal of Cosmetic Science, 43(4), 474-483. https://doi.org/10.1111/ics.12721
He, H., Li, Z., Qin, Q., Yu, Y., Guo, Y., Cai, S., & Li, Z. (2025). Spectroscopic and Imaging Technologies Combined with Machine Learning for Intelligent Perception of Pesticide Residues in Fruits and Vegetables. Foods, 14(15), 2679. https://doi.org/10.3390/foods14152679
Hou, S. J., Cheng, K. C., Lin, S. H., Hsiao, I. L., Santoso, S. P., Singajaya, S., ... & Lin, S. P. (2024). Improvement of extracellular polysaccharides production from Cordyceps militaris immobilized alginate beads in repeated-batch fermentation. LWT, 193, 115752. https://doi.org/10.1016/j.lwt.2024.115752
ISO. (2020). ISO 660: Animal and vegetable fats and oils—Determination of acid value and acidity. Geneva: International Organization for Standardization.
ISO. (2020). ISO 3657: Animal and vegetable fats and oils—Determination of saponification value. Geneva: International Organization for Standardization.
ISO. (2020). ISO 758: Liquid chemical products—Determination of density by the hydrometer method. Geneva: International Organization for Standardization.
ISO. (2023). ISO 4561: Soaps—Determination of free alkali and free fatty acids. Geneva: International Organization for Standardization.
ISO. (1978). ISO 672: Soaps—Determination of moisture and volatile matter content—Oven method. Geneva: International Organization for Standardization. https://www.iso.org/standard/4837.html?utm_source=chatgpt.com
Jara-Vélez, J., Siche, R., Velásquez-Barreto, F. F., Salazar-Campos, O., Lopez, Y., & Salazar-Campos, J. (2025). Analytical optimisation of eco-friendly soap production using hyperspectral imaging and chemometric modelling of physicochemical properties. Microchemical Journal, 215, 114259. https://doi.org/10.1016/j.microc.2025.114259
Kharbach, M., Alaoui Mansouri, M., Taabouz, M., & Yu, H. (2023). Current application of advancing spectroscopy techniques in food analysis: data handling with chemometric approaches. Foods, 12(14), 2753. https://doi.org/10.3390/foods12142753
Lee, J. B., Bae, Y. J., Kwon, G. Y., Sohn, S. K., Lee, H. R., Kim, H. J., ... & Shim, K. B. (2025). Short-Wave Infrared Hyperspectral Image-Based Quality Grading of Dried Laver (Pyropia spp.). Foods, 14(3), 497. https://doi.org/10.10.3390/foods14030497
Li, X., Fu, X., & Li, H. (2024). A CARS-SPA-GA feature wavelength selection method based on hyperspectral imaging with potato leaf disease classification. Sensors, 24(20), 6566. https://doi.org/10.3390/s24206566
Mahmud, N., Islam, J., Oyom, W., Adrah, K., Adegoke, S. C., & Tahergorabi, R. (2023). A review of different frying oils and oleogels as alternative frying media for fat-uptake reduction in deep-fat fried foods. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e22863
Manzoor, S., Masoodi, F. A., Rashid, R., Ahmad, M., & Kousar, M. U. (2022). Quality assessment and degradative changes of deep-fried oils in street-fried food chain of Kashmir, India. Food Control, 141, 109184. https://doi.org/10.1016/j.foodcont.2022.109184 hh.alma.exlibrisgroup.com
Maotsela, T., Danha, G., & Muzenda, E. (2019). Utilization of Waste Cooking Oil and Tallow for Production of Toilet “Bath” Soap. Procedia Manufacturing, 35, 541-545. https://doi.org/10.1016/j.promfg.2019.07.008
Marín-Méndez, J. J., Esplandiú, P. L., Alonso-Santamaría, M., Remirez-Moreno, B., Del Castillo, L. U., Dublán, J. E., ... & Sáiz-Abajo, M. J. (2024). Hyperspectral imaging as a non-destructive technique for estimating the nutritional value of food. Current Research in Food Science, 9, 100799. https://doi.org/10.1016/j.crfs.2024.100799
Medina–García, M., Amigo, J. M., Martínez-Domingo, M. A., Valero, E. M., & Jiménez–Carvelo, A. M. (2025). Strategies for analysing hyperspectral imaging data for food quality and safety issues–A critical review of the last 5 years. Microchemical Journal, 214, 113994. https://doi.org/10.1016/j.microc.2025.113994
Nikzadfar, M., Rashvand, M., Zhang, H., Shenfield, A., Genovese, F., Altieri, G., ... & Di Renzo, G. C. (2024). Hyperspectral imaging aiding artificial intelligence: A reliable approach for food qualification and safety. Applied Sciences, 14(21), 9821. https://doi.org/10.3390/app14219821
Olu-Arotiowa, O. A., Odesanmi, A. A., Adedotun, B. K., Ajibade, O. A., Olasesan, I. P., Odofin, O. I., & Abass, A. O. (2022). Review on environmental impact and valourization of waste cooking oil. LAUTECH Journal of Engineering and Technology, 16(1), 144-163.
Pasquini, C. (2018). Near infrared spectroscopy: A mature analytical technique with new perspectives–A review. Analytica chimica acta, 1026, 8-36. https://doi.org/10.1016/j.aca.2018.04.004
Park, J.-M., Koh, J.-H., & Kim, J.-M. (2020). Determining the reuse of frying oil for fried sweet and sour pork according to type of oil and frying time. Food Science of Animal Resources, 40(5), 785–794. https://doi.org/10.5851/kosfa.2020.e54
Patel, D., Bhise, S., Kapdi, S. S., & Bhatt, T. (2024). Non-destructive hyperspectral imaging technology to assess the quality and safety of food: A review. Food Production, Processing and Nutrition, 6(1), 69. https://doi.org/10.1186/s43014-024-00246-4
Pesce, L. (2024). Machine Learning for Predicting Grape Quality Using Spectral Imaging Techniques (Doctoral dissertation, Politecnico di Torino). https://webthesis.biblio.polito.it/34088/
Pillay, R., Hardeberg, J. Y., & George, S. (2019). Hyperspectral imaging of art: Acquisition and calibration workflows. Journal of the American Institute for Conservation, 58(1-2), 3-15. https://doi.org/10.1080/01971360.2018.1549919
Rogers, M., Blanc-Talon, J., Urschler, M., & Delmas, P. (2023). Wavelength and texture feature selection for hyperspectral imaging: a systematic literature review. Journal of Food Measurement and Characterization, 17(6), 6039-6064. https://doi.org/10.1007/s11694-023-02044-x
Poljšak, N., & Kočevar Glavač, N. (2024). Analytical evaluation and antioxidant activity of selected vegetable oils to support evidence-based use in dermal products. Natural Product Communications, 19(10), 1934578X241281245. https://doi.org/10.1177/1934578X241281245
Roman-Lara, M. M., & Chong, K. J. (2025). A miniaturized iodine value assay for quantifying the unsaturated fatty acid content of lipids, lipid mixtures, and biological membranes. Lipids, 60(5), e12438. https://doi.org/10.1002/lipd.12438
Samrat, N. H., Johnson, J. B., White, S., Naiker, M., & Brown, P. (2022). A rapid non-destructive hyperspectral imaging data model for the prediction of pungent constituents in dried ginger. Foods, 11(5), 649. https://doi.org/10.3390/foods11050649
Sarkar, R., Pal, A., Rakshit, A., & Saha, B. (2021). Properties and applications of amphoteric surfactant: A concise review. Journal of Surfactants and Detergents, 24(5), 709-730. https://doi.org/10.1002/jsde.12542
Shaikh, M. S., Jaferzadeh, K., Thörnberg, B., & Casselgren, J. (2021). Calibration of a hyper-spectral imaging system using a low-cost reference. Sensors, 21(11), 3738. https://doi.org/10.3390/s21113738
Tawo, O. E., & Mbamalu, M. I. (2025). Advancing waste valorization techniques for sustainable industrial operations and improved environmental safety. Int. J. Sci. Res. Arch, 14(02), 127-149. https://doi.org/10.10.30574/ijsra.2025.14.2.0334
Uduma, U. A., Isah, A. N., Zauro, S. A., & Yakubu, M. (2025). Production and analysis of laundry soaps from blended oils (palm kernel oil, palm stearin, beef tallow, and cottonseed oil). FUDMA Journal of Sciences, 19(1), 45–55. https://doi.org/10.33003/fjs-2025-0904-3600
UN-Habitat. (2020). Solid Waste Management. UN-Habitat Knowledge & Innovation. https://unhabitat.org/topic/solid-waste-management?utm_source=chatgpt.com
United Nations Environment Programme (UNEP). (2024). Global Waste Management Outlook 2024 (GWMO 2024). https://doi.org/10.59117/20.500.11822/44939
Zhang, G., & Abdulla, W. (2023). Explainable AI-driven wavelength selection for hyperspectral imaging of honey products. Food Chemistry Advances, 3, 100491. https://doi.org/10.1109/JSTARS.2023.3312345
Zhang, L., Gao, X., & Sun, D.-W. (2023). Visualization of food internal quality attributes by hyperspectral imaging coupled with multivariate regression and deep learning. Food Control, 151, 109884. https://doi.org/10.1016/j.foodcont.2023.109884
Zuo, J., Peng, Y., Li, Y., Chen, Y., & Yin, T. (2024). Advancements in Hyperspectral Imaging for Assessing Nutritional Parameters in Muscle Food: Current Research and Future Trends. Journal of Agricultural and Food Chemistry, 73(1), 85-99. https://doi.org/10.1016/j.microc.2025.113994
Descargas
Archivos adicionales
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Joe Jara-Velez, Jhastin Arturo Florián-Huamán, David A. Callirgos-Romero

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license







