Tecnologías emergentes para la extracción de pectina a partir de residuos agroindustriales: Una revisión sistemática y bibliométrica
DOI:
https://doi.org/10.57188/Keywords:
Residuos agroalimentarios, ultrasonido, microondas, polisacáridos, extracción verdeAbstract
En los últimos años se ha incrementado el interés por la extracción de pectina a partir de residuos agroindustriales. No obstante, los métodos convencionales emplean disolventes tóxicos, tiempos prolongados y elevados requerimientos energéticos, lo que ha impulsado la adopción de tecnologías emergentes más sostenibles. El objetivo de esta revisión fue analizar sistemáticamente las técnicas más eficientes para la extracción de pectina, con énfasis en ultrasonido (UAE) y microondas (MAE). La búsqueda en Scopus y ScienceDirect, bajo la metodología PRISMA, permitió seleccionar 43 estudios publicados entre 2020 y abril de 2025. Los resultados evidencian que las tecnologías emergentes, permiten obtener mayor rendimiento, ahorro de tiempo y energía, además de minimizar el impacto ambiental y maximizar la calidad de la pectina en comparación con la extracción convencional. Con base en los estudios analizados, investigaciones futuras deben orientarse a la integración de estas tecnologías, tanto de manera secuencial como simultánea, con el fin de maximizar aún más el rendimiento y la calidad de la pectina. Además, es necesario optimizar parámetros operativos, evaluar su desempeño a escala piloto e industrial y considerar su viabilidad económica y ambiental, consolidando así su aplicación en la valorización de residuos agroindustriales hacia procesos más sostenibles y circulares.
Downloads
References
Arrutia, F., Adam, M., Calvo-Carrascal, M. Á., Mao, Y., & Binner, E. (2020). Development of a continuous-flow system for microwave-assisted extraction of pectin-derived oligosaccharides from food waste. Chemical Engineering Journal, 395. https://doi.org/10.1016/j.cej.2020.125056
Asgari, K., Labbafi, M., Khodaiyan, F., Kazemi, M., & Hosseini, S. S. (2020). High-methylated pectin from walnut processing wastes as a potential resource: Ultrasound assisted extraction and physicochemical, structural and functional analysis. International Journal of Biological Macromolecules, 152, 1274–1282. https://doi.org/10.1016/j.ijbiomac.2019.10.224
Benmebarek, I. E., Gonzalez-Serrano, D. J., Aghababaei, F., Ziogkas, D., Garcia-Cruz, R., Boukhari, A., Moreno, A., & Hadidi, M. (2024). Optimizing the microwave-assisted hydrothermal extraction of pectin from tangerine by-product and its physicochemical, structural, and functional properties. Food Chemistry: X, 23, 101615. https://doi.org/10.1016/J.FOCHX.2024.101615
Castellarin, I., Higuera Coelho, R., Zukowski, E., Ponce, N. M. A., Stortz, C., Gerschenson, L. N., & Fissore, E. N. (2023). Effect of ultrasonic pretreatments on the characteristics of pectin extracted from Salustiana orange cultivated in Argentina. Journal of Food Process Engineering, 46(6), e14229. https://doi.org/10.1111/jfpe.14229
Chamyuang, S., Owatworakit, A., Intatha, U., & Duangphet, S. (2021). Coffee pectin production: An alternative way for agricultural waste management in coffee farms. ScienceAsia, 47(S1), 90–95. https://doi.org/10.2306/SCIENCEASIA1513-1874.2021.S003
Choudhury, N., Nickhil, C., & Deka, S. C. (2025). Optimization and characterization of physicochemical, morphological, structural, thermal, and rheological properties of microwave-assisted extracted pectin from Dillenia indica fruit. International Journal of Biological Macromolecules, 295, 139583. https://doi.org/10.1016/J.IJBIOMAC.2025.139583
de Souza, V., Negreiros, L., Ribeiro, B., Paiva Lopes, J., & das Chagas, F. (2025). Physicochemical characterization, pectin extraction and analysis of volatile compounds of Alibertia sorbilis Ducke using ultrasound: Potential for new products in the bioeconomy of the Amazon. Food and Humanity, 4, 100529. https://doi.org/10.1016/J.FOOHUM.2025.100529
Divyashri, G., Krishna Murthy, T. P., Ragavan, K. V., Sumukh, G. M., Sudha, L. S., Nishka, S., Himanshi, G., Misriya, N., Sharada, B., & Anjanapura Venkataramanaiah, R. (2023). Valorization of coffee bean processing waste for the sustainable extraction of biologically active pectin. Heliyon, 9(9), e20212. https://doi.org/10.1016/j.heliyon.2023.e20212
Dixit, S. S., Muruganandam, L., & Ganesh Moorthy, I. (2025). Pectin from fruit peel: A comprehensive review on various extraction approaches and their potential applications in pharmaceutical and food industries. Carbohydrate Polymer Technologies and Applications, 9, 100708. https://doi.org/10.1016/J.CARPTA.2025.100708
Du, H., Olawuyi, I. F., Said, N. S., & Lee, W. Y. (2024). Comparative Analysis of Physicochemical and Functional Properties of Pectin from Extracted Dragon Fruit Waste by Different Techniques. Polymers 2024, Vol. 16, Page 1097, 16(8), 1097. https://doi.org/10.3390/POLYM16081097
Duggal, M., Singh, D. P., Singh, S., Khubber, S., Garg, M., & Krishania, M. (2024). Microwave-assisted acid extraction of high-methoxyl kinnow (Citrus reticulata) peels pectin: Process, techno-functionality, characterization and life cycle assessment. Food Chemistry: Molecular Sciences, 9, 100213. https://doi.org/10.1016/J.FOCHMS.2024.100213
Durga, A., Deepa, R., Prakash. Pandurangan, Swetha, S., Stanley, A., Antony, S., Ravi, S., Thirumurugan, A., & Meivelu, M. (2025). Sustainable pectin extraction: Navigating industrial challenges and opportunities with fruit by-products – A review. Process Biochemistry, 154, 234–245. https://doi.org/10.1016/J.PROCBIO.2025.04.025
Elik, A., & Armağan, H. S. (2025). Valorization of black carrot pomace by using microwave-assisted hydrothermal extraction method: An optimization and comparison research on pectin extraction. Food and Humanity, 4, 100637. https://doi.org/10.1016/J.FOOHUM.2025.100637
Fernández-Delgado, M., del Amo-Mateos, E., Coca, M., López-Linares, J. C., García-Cubero, M. T., & Lucas, S. (2023). Enhancement of industrial pectin production from sugar beet pulp by the integration of surfactants in ultrasound-assisted extraction followed by diafiltration/ultrafiltration. Industrial Crops and Products, 194, 116304. https://doi.org/10.1016/J.INDCROP.2023.116304
Fiedot, M., Rac-Rumijowska, O., Suchorska-Woźniak, P., Czajkowski, M., Szustakiewicz, K., Safandowska, M., Różański, A., Zdunek, A., Stawiński, W., Cybińska, J., Teterycz, H., & Kennedy, J. F. (2024). The smart apple-based foil: The role of pectin-glycerol-lipid interactions on thermoresponsive mechanism. Food Hydrocolloids, 154, 110067. https://doi.org/10.1016/J.FOODHYD.2024.110067
Fırat, E., Koca, N., & Kaymak-Ertekin, F. (2023). Extraction of pectin from watermelon and pomegranate peels with different methods and its application in ice cream as an emulsifier. Journal of Food Science, 88(11), 4353–4374. https://doi.org/10.1111/1750-3841.16752
Haque, S. M., Kabir, A., Ratemi, E., Elzagheid, M., Appu, S. P., Ghani, S. S., & Sarief, A. (2025). Greener Pectin Extraction Techniques: Applications and Challenges. Separations, 12(3), 65. https://doi.org/10.3390/SEPARATIONS12030065
Hernandez, O., Ferreira, A., Tiwari, B., & Villamiel, M. (2024). Update of high-intensity ultrasound applications for the extraction of pectin from agri-food by-products. TrAC Trends in Analytical Chemistry, 175, 117728. https://doi.org/10.1016/J.TRAC.2024.117728
Hernandez-Hernandez, O., Ferreira-Lazarte, A., Tiwari, B., & Villamiel, M. (2024). Update of high-intensity ultrasound applications for the extraction of pectin from agri-food by-products. TrAC Trends in Analytical Chemistry, 117728. https://doi.org/10.1016/J.TRAC.2024.117728
Hossain, M. M., Ara, R., Yasmin, F., Suchi, M., & Zzaman, W. (2024). Microwave and ultrasound assisted extraction techniques with citric acid of pectin from Pomelo (Citrus maxima) peel. Measurement: Food, 13, 100135. https://doi.org/10.1016/J.MEAFOO.2024.100135
Hundie, K. B. (2021). Optimization and characterization of ultrasound-assisted pectin extracted from orange waste. Pakistan Journal of Analytical and Environmental Chemistry, 22(2), 344–357. https://doi.org/10.21743/pjaec/2021.12.13
Iñiguez-Moreno, M., Pizaña-Aranda, J. J. P., Ramírez-Gamboa, D., Ramírez-Herrera, C. A., Araújo, R. G., Flores-Contreras, E. A., Iqbal, H. M. N., Parra-Saldívar, R., & Melchor-Martínez, E. M. (2024). Enhancing pectin extraction from orange peel through citric acid-assisted optimization based on a dual response. International Journal of Biological Macromolecules, 263, 130230. https://doi.org/10.1016/J.IJBIOMAC.2024.130230
Karbuz, P., & Tugrul, N. (2021). Microwave and ultrasound assisted extraction of pectin from various fruits peel. Journal of Food Science and Technology, 58(2), 641–650. https://doi.org/10.1007/s13197-020-04578-0
Lal, A. M. N., Prince, M. V., Kothakota, A., Pandiselvam, R., Thirumdas, R., Mahanti, N. K., & Sreeja, R. (2021). Pulsed electric field combined with microwave-assisted extraction of pectin polysaccharide from jackfruit waste. Innovative Food Science and Emerging Technologies, 74, 102844. https://doi.org/10.1016/j.ifset.2021.102844
Li, H., Li, Z., Wang, P., Liu, Z., An, L., Zhang, X., Xie, Z., Wang, Y., Li, X., & Gao, W. (2024). Evaluation of citrus pectin extraction methods: Synergistic enhancement of pectin’s antioxidant capacity and gel properties through combined use of organic acids, ultrasonication, and microwaves. International Journal of Biological Macromolecules, 266, 131164. https://doi.org/10.1016/j.ijbiomac.2024.131164
Lim, W. Y. C., Yusof, N. L., Ismail-Fitry, M. R., & Suleiman, N. (2020). Volarization of valuable compound from watermelon by-product using ultrasound-assisted extraction. Food Research, 4(6), 1995–2002. https://doi.org/10.26656/fr.2017.4(6).197
Mada, T., Duraisamy, R., & Guesh, F. (2022). Optimization and characterization of pectin extracted from banana and papaya mixed peels using response surface methodology. Food Science and Nutrition, 10(4), 1222–1238. https://doi.org/10.1002/fsn3.2754
Malpartida, R., Ore, F., De La Cruz, G., Yata, L. E., Tocto, L., Fierro, Y. E. C., Cochachi, W., & Ruiz, A. (2025). Optimized Extraction of High-purity Pectin from Orange Biowaste using Synergistic Ultrasound-microwave-assisted Green Technologies. Current Research in Nutrition and Food Science Journal, 13(2), 764–781. https://doi.org/10.12944/CRNFSJ.13.2.15
Mamiru, D., & Gonfa, G. (2023). Extraction and characterization of pectin from watermelon rind using acetic acid. Heliyon, 9(2), e13525. https://doi.org/10.1016/J.HELIYON.2023.E13525
Maqbool, Z., Khalid, W., Atiq, H. T., Koraqi, H., Javaid, Z., Alhag, S. K., Al-Shuraym, L. A., Bader, D. M. D., Almarzuq, M., Afifi, M., & AL-Farga, A. (2023). Citrus Waste as Source of Bioactive Compounds: Extraction and Utilization in Health and Food Industry. Molecules 2023, Vol. 28, Page 1636, 28(4), 1636. https://doi.org/10.3390/molecules28041636
Mbaku, A. B., Ngwasiri, P. N., Ambindei, W. A., Ngwabie, N. M., & Ngassoum, M. B. (2023). Agrofood Waste and By-Product Valorization, Extraction, and Characterization of Pectin from the Waste Biomass Fruit Peel of Aframomum angustifolium Using Response Surface Methodology as Alternative Sources of a Functional Pectin. International Journal of Chemical Engineering, 2023, 5277914. https://doi.org/10.1155/2023/5277914
Muñoz-Almagro, N., Molina-Tijeras, J. A., Montilla, A., Vezza, T., Sánchez-Milla, M., Rico-Rodríguez, F., & Villamiel, M. (2023). Pectin from sunflower by-products obtained by ultrasound: Chemical characterization and in vivo evaluation of properties in inflammatory bowel disease. International Journal of Biological Macromolecules, 246, 125505. https://doi.org/10.1016/J.IJBIOMAC.2023.125505
Nguyen, K. X., Mai, H. C., Tran, T. K. N., & Nguyen, T. V. (2022). Evaluation of parameters affecting the process of extraction pectin from red flesh dragon fruit peel. 3rd Symposium on Industrial Science and Technology 2021, 51, 1448–1454. https://doi.org/10.1016/j.matpr.2021.12.165
Pangestu, R., Amanah, S., Juanssilfero, A. B., & Perwitasari, U. (2020). Response surface methodology for microwave-assisted extraction of pectin from cocoa pod husk (Theobroma cacao) mediated by oxalic acid. Journal of Food Measurement and Characterization, 14(4), 2126–2133. https://doi.org/10.1007/s11694-020-00459-4
Panwar, D., Panesar, P. S., & Chopra, H. K. (2023). Ultrasound-assisted extraction of pectin from Citrus limetta peels: Optimization, characterization, and its comparison with commercial pectin. Food Bioscience, 51, 102231. https://doi.org/10.1016/j.fbio.2022.102231
Pei, C. C., Hsien, T. S., Hsuan, F. C., Hsuan, H. L., Chi, C. C., & Yi, L. M. (2024). Microwave- and ultrasoound-assisted extraction of pectin yield and physicochemical properties from lemon peel. Journal of Agriculture and Food Research, 15, 101009. https://doi.org/10.1016/j.jafr.2024.101009
Quispe, A. M., Hinojosa-Ticona, Y., Miranda, H. A., & Sedano, C. A. (2021). Scientific writing series: Systematic review. In Revista del Cuerpo Medico Hospital Nacional Almanzor Aguinaga Asenjo (Vol. 14, Issue 1, pp. 94–99). Medical Body of the Almanzor Aguinaga Asenjo National Hospital. https://doi.org/10.35434/rcmhnaaa.2021.141.906
Quoc, L. P. T. (2022). PHYSICOCHEMICAL CHARACTERISTICS AND ANTIOXIDANT ACTIVITIES OF BANANA PEELS PECTIN EXTRACTED WITH MICROWAVE-ASSISTED EXTRACTION. Agriculture and Forestry, 68(1), 145–157. https://doi.org/10.17707/AgricultForest.68.1.08
Rahman, M. S., Khan, S. S., Ahmed, M. W., Jony, M. E., Das, P. C., & Uddin, M. B. (2023). Extraction of pectin from Elephant Apple and Pomelo fruit peels: Valorization of fruit waste towards circular economy. Food Chemistry Advances, 3, 100544. https://doi.org/10.1016/J.FOCHA.2023.100544
Rahmani, Z., Khodaiyan, F., Kazemi, M., & Sharifan, A. (2020). Optimization of microwave-assisted extraction and structural characterization of pectin from sweet lemon peel. International Journal of Biological Macromolecules, 147, 1107–1115. https://doi.org/10.1016/j.ijbiomac.2019.10.079
Rai, P., Mishra, B., Jayakrishnan, U., Mukherjee, A., Moulik, S., Roy, S., & Kumari, A. (2025). Ultrasonic cavitation assisted deep eutectic solvent extraction of pectin from waste sweet lime peel: Statistical optimization and energetic analysis. Industrial Crops and Products, 228, 120895. https://doi.org/10.1016/J.INDCROP.2025.120895
Resende, L. M., & Franca, A. S. (2023). Jabuticaba (Plinia sp.) Peel as a Source of Pectin: Characterization and Effect of Different Extraction Methods. Foods, 12(1). https://doi.org/10.3390/foods12010117
Rivadeneira, J. P., Wu, T., Ybanez, Q., Dorado, A. A., Migo, V. P., Nayve, F. R. P., & Castillo-Israel, K. A. T. (2020). Microwave-assisted extraction of pectin from “Saba” banana peel waste: Optimization, characterization, and rheology study. International Journal of Food Science, 2020, 8879425. https://doi.org/10.1155/2020/8879425
Saurabh, V., Vathsala, V., Yadav, S. K., Sharma, N., Varghese, E., Saini, V., Singh, S. P., Dutta, A., & Kaur, C. (2023). Extraction and characterization of ultrasound assisted extraction: improved functional quality of pectin from jackfruit (Artocarpus heterophyllus Lam.) peel waste. Journal of Food Measurement and Characterization, 17(6), 6503–6521. https://doi.org/10.1007/s11694-023-02126-w
Şen, E., Göktürk, E., & Uğuzdoğan, E. (2024). Microwave-assisted extraction of pectin from onion and garlic waste under organic, inorganic and dual acid mixtures. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-024-02395-z
Sengar, A. S., Rawson, A., Muthiah, M., & Kalakandan, S. K. (2020). Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste. Ultrasonics Sonochemistry, 61, 104812. https://doi.org/10.1016/j.ultsonch.2019.104812
Sharma, P., Osama, K., Varjani, S., Farooqui, A., & Younis, K. (2023). Microwave-assisted valorization and characterization of Citrus limetta peel waste into pectin as a perspective food additive. Journal of Food Science and Technology, 60(4), 1284–1293. https://doi.org/10.1007/s13197-023-05672-9
Shourove, J. H., Jon, P. H., Samadder, M., Chy, M. W. R., Miah, M. S., Fahim, R. H., & Islam, G. M. R. (2025). Extraction of pectin from watermelon rinds using sequential ultrasound-microwave technique: Optimization using RSM and ANN modeling and characterization. Inter J of Biological Macromolecules, 307, 141905. https://doi.org/10.1016/J.IJBIOMAC.2025.141905
Sook Wah, C., Ching Enn, H., Chin Ping, T., Yih Phing, K., & Zaixiang, L. (2023). Ultrasound-Assisted Extraction of Pectin from Jackfruit (Artocarpus Heterophyllus) Rags: Optimization, Characterization, and Application in Model Food Gel. Current Research in Nutrition and Food Science, 11(3), 991–1007. https://doi.org/10.12944/CRNFSJ.11.3.07
Sucheta, Misra, N. N., & Yadav, S. K. (2020). Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics. Food Hydrocolloids, 102, 105592. https://doi.org/10.1016/j.foodhyd.2019.105592
Thu Dao, T. A., Webb, H. K., & Malherbe, F. (2021). Optimization of pectin extraction from fruit peels by response surface method: Conventional versus microwave-assisted heating. Food Hydrocolloids, 113, 106475. https://doi.org/10.1016/j.foodhyd.2020.106475
Tran, N. T. K., Nguyen, V. B., Tran, T. V, & Nguyen, T. T. T. (2023). Microwave-assisted extraction of pectin from jackfruit rags: Optimization, physicochemical properties and antibacterial activities. Food Chemistry, 418. https://doi.org/10.1016/j.foodchem.2023.135807
Turan, O., Isci, A., Yılmaz, M. S., Tolun, A., & Sakiyan, O. (2024). Microwave-assisted extraction of pectin from orange peel using deep eutectic solvents. Sustainable Chemistry and Pharmacy, 37, 101352. https://doi.org/10.1016/j.scp.2023.101352
Vathsala, V., Singh, S. P., Bishnoi, M., Varghese, E., Saurabh, V., Khandelwal, A., & Kaur, C. (2024). Ultrasound-assisted extraction (UAE) and characterization of citrus peel pectin: Comparison between pummelo (Citrus grandis L. Osbeck) and sweet lime (Citrus limetta Risso). Sustainable Chemistry and Pharmacy, 37, 101357. https://doi.org/10.1016/J.SCP.2023.101357
Vieira, D. R. R., da Silva, V. R., & Spier, M. R. (2024). Extraction of high methoxyl pectin from unripe waste Ponkan mandarine (Citrus reticulata Blanco cv. Ponkan) with an eco-friendly solvent. International Journal of Biological Macromolecules, 258. https://doi.org/10.1016/j.ijbiomac.2023.128663
Wani, K. M., & Patidar, R. (2025). Microwave-assisted extraction of pectin from lemon peel powder: Optimization and physicochemical properties. Sustainable Chemistry for the Environment, 9, 100223. https://doi.org/10.1016/J.SCENV.2025.100223
Wani, K. M., & Uppaluri, R. V. S. (2023). Characterization of pectin extracted from pomelo peel using pulsed ultrasound assisted extraction and acidic hot water extraction process. Applied Food Research, 3(2), 100345. https://doi.org/10.1016/J.AFRES.2023.100345
Yu, Y., Lu, P., Yang, Y., Ji, H., Zhou, H., Chen, S., Qiu, Y., & Chen, H. (2024). Differences in physicochemical properties of pectin extracted from pomelo peel with different extraction techniques. Scientific Reports, 14(1), 1–10. https://doi.org/10.1038/s41598-024-59760-7
Zakaria, N. A., Abd Rahman, N. H., Rahman, R. A., Zaidel, D. N. A., Hasham, R., Illias, R. M., Mohamed, R., & Ahmad, R. A. (2023). Extraction optimization and physicochemical properties of high methoxyl pectin from Ananas comosus peel using microwave-assisted approach. Journal of Food Measurement and Characterization, 17(4), 3354–3367. https://doi.org/10.1007/s11694-023-01858-z
Zioga, M., Chroni, A., & Evageliou, V. (2022). Utilisation of Pectins Extracted from Orange Peels by Non Conventional Methods in the Formation of Edible Films in the Presence of Herbal Infusions. Polysaccharides, 3(3), 574–588. https://doi.org/10.3390/polysaccharides3030034
Zioga, M., Tsouko, E., Maina, S., Koutinas, A., Mandala, I., & Evageliou, V. (2022). Physicochemical and rheological characteristics of pectin extracted from renewable orange peel employing conventional and green technologies. Food Hydrocolloids, 132, 107887. https://doi.org/10.1016/J.FOODHYD.2022.107887
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Lesly Yata-Franco, Laumer Tocto-Yajahuanca, Rafael Julián Malpartida-Yapias

This work is licensed under a Creative Commons Attribution 4.0 International License.

Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license