Tasas de respiración de variedades de Vaccinium corymbosum L. y tecnologías postcosecha: Una revisión sistemática
DOI:
https://doi.org/10.57188/manglar.2025.052Palabras clave:
Tasas respiratorias, Vaccinium corymbosum L., Variedades de arándanos, Postcosecha, tecnologías postcosechaResumen
Conocer las tasas de respiración en arándanos es fundamental porque determinan la velocidad del metabolismo, la vida postcosecha y la susceptibilidad al deterioro, influyendo directamente en firmeza, pérdidas fisiológicas y desarrollo de patógenos. El presente artículo tuvo como objetivo compilar las tasas de respiración de variedades de Vaccinium corymbosum L., identificar los factores abióticos que las modifican y describir las principales tecnologías postcosecha relacionadas. Se aplicó la metodología PRISMA 2020, obteniéndose 86 artículos científicos publicados entre 2020 y 2025 que cuantificaron tasas respiratorias y evaluaron tecnologías como atmósferas modificadas, ozono, quitosano y radiación UV-C. Los resultados mostraron que las variedades analizadas presentan tasas entre 4,1 y 77 mg CO₂ kg⁻¹ h⁻¹, determinadas principalmente por la temperatura y el genotipo. Las tecnologías evaluadas demostraron eficacia directa o indirecta para disminuir la tasa respiratoria, ya sea reduciendo o inhibiendo Botrytis cinerea, manteniendo la firmeza o incrementando antocianinas y fenoles totales. Se concluye que humedades relativas de 90% – 95%, concentraciones de CO₂ inferiores al 20% y O₂ por debajo del 10% son factores determinantes que condicionan la tasa de respiración, la vida postcosecha y la calidad final del fruto.
Descargas
Referencias
Almasoud, W. A., Abdel-Sattar, M., Khalifa, S. M., Dawood, A. S., Shahda, M. A., El-Taher, A. M., Haikal, A., Rihan, H., & Ahmed, A. F. (2024). Influence of Salicylic Acid and Melatonin During Postharvest Refrigeration on Prolonging Keitt Mango Freshness. Sustainability, 16(23), 10675. https://doi.org/10.3390/su162310675
Almutairi, K. F., Alharbi, A. R., Abdelaziz, M. E., & Mosa, W. F. A. (2024). Salicylic acid and chitosan effects on fruit quality when applied to fresh strawberry or during different periods of cold storage. BioResources 19(3), 6057-6075. https://doi.org/10.15376/biores.19.3.6057-6075
Anaya-Esparza, L.M., Pérez-Larios, A., Ruvalcaba-Gómez, J. M., et al. (2020). Funcionalización de recubrimiento comestible a base de quitosano para la conservación postcosecha de frutas y hortalizas. TIP Rev Esp Cienc Quim Biol., 23(1), 1-14. https://doi.org/10.22201/fesz.23958723e.2020.0.241
Anthony, B. M., Kim, Y. K., & Minas, I. S. (2024). Evaluating low pressure storage for prolonging the postharvest life of blueberries. Scientia Horticulturae, 337 https://doi.org/10.1016/j.scienta.2024.113535
Azari, H., Morovati, A., Gargari, B. P., & Sarbakhsh, P. (2022). Beneficial effects of blueberry supplementation on the components of metabolic syndrome: a systematic review and meta-analysis. Food & function, 13(9), 4875-4900. https://doi.org/10.1039/D1FO03715C
Baia, G. M., Freitas-Silva, O., & Junior, M. F. (2020). Understanding the role of chlorine and ozone to control postharvest diseases in fruit and vegetables: A review. Current Nutrition & Food Science, 16(4), 455-461. https://doi.org/10.2174/1573401315666190212161209
Bilgin, A. B., & Güneş, G. (2024). Effects of ultraviolet–C treatment on postharvest physiologies and decay of berries: A review. ITU Journal of Food Science and Technology, 2(2), 85-100.
Brizzolara, S., Manganaris, G. A., Fotopoulos, V., Watkins, C. B., & Tonutti, P. (2020). Primary metabolism in fresh fruits during storage. Frontiers in plant science, 11, 80. https://doi.org/10.3389/fpls.2020.00080
Brondino, L., Briano, R., Massaglia, S., & Giuggioli, N. R. (2022). Influence of harvest method on the quality and storage of highbush blueberry. Journal of Agriculture and Food Research, 10, 100415. https://doi.org/10.1016/j.jafr.2022.100415
Cai, Y., Takeda, F., Foote, B., & DeVetter, L. W. (2021). Effects of Machine-Harvest Interval on Fruit Quality of Fresh Market Northern Highbush Blueberry. Horticulturae, 7(8), 245. https://doi.org/10.3390/horticulturae7080245
Chaiwong, N., Leelapornpisid, P., Jantanasakulwong, K., Rachtanapun, P., Seesuriyachan, P., Sakdatorn, V., Leksawasdi, N., & Phimolsiripol, Y. (2020). Antioxidant and moisturizing properties of carboxymethyl chitosan with different molecular weights. Polymers, 12(7), 1445. https://doi.org/10.3390/polym12071445
Chen, D., Zhang, Y., Zhao, J., Liu, L., & Zhao, L. (2024). Research progress on physical preservation technology of fresh-cut fruits and vegetables. Horticulturae, 10(10), 1098. https://doi.org/10.3390/horticulturae10101098
Chen, Z., Xu, Y., Lu, Y., Miao, Z., Yi, Y., Wang, L., Hou, W., Ai, Y., Wang, H., & Min, T. (2022). Effect and mechanism of eugenol on storage quality of fresh-peeled Chinese water chestnuts. Frontiers in Plant Science, 13, 965723. https://doi.org/10.3389/fpls.2022.965723
Czerwiński, K., Rydzkowski, T., Wróblewska-Krepsztul, J., & Thakur, V. K. (2021). Towards impact of modified atmosphere packaging (MAP) on shelf-life of polymer-film-packed food products: Challenges and sustainable developments. Coatings, 11(12), 1504. https://doi.org/10.3390/coatings11121504
Dai, L., Wang, X., Zhang, J., & Li, C. (2025). Application of Chitosan and Its Derivatives in Postharvest Coating Preservation of Fruits. Foods, 14(8), 1318. https://doi.org/10.3390/foods14081318
Darré, M., Vicente, A. R., Cisneros-Zevallos, L., & Artés-Hernández, F. (2022). Postharvest ultraviolet radiation in fruit and vegetables: Applications and factors modulating its efficacy on bioactive compounds and microbial growth. Foods, 11(5), 653. https://doi.org/10.3390/foods11050653
Duan, Y., Tarafdar, A., Chaurasia, D., Singh, A., Bhargava, P. C., Yang, J., Li, Z., Ni, X., Tian, Y., Li, H., & Awasthi, M. K. (2022). Blueberry fruit valorization and valuable constituents: A review. International Journal of Food Microbiology, 381, 109890. https://doi.org/10.1016/j.ijfoodmicro.2022.109890
Eldib, R., Khojah, E., Elhakem, A., Benajiba, N., & Helal, M. (2020). Chitosan, nisin, silicon dioxide nanoparticles coating films effects on blueberry (Vaccinium myrtillus) quality. Coatings, 10(10), 962. https://doi.org/10.3390/coatings10100962
Falagán, N., Miclo, T., & Terry, L. A. (2020). Graduated controlled atmosphere: A novel approach to increase “Duke” blueberry storage life. Frontiers in plant science, 11, 514750. https://doi.org/10.3389/fpls.2020.00221
Fang, Y., & Wakisaka, M. (2021). A review on the modified atmosphere preservation of fruits and vegetables with cutting-edge technologies. Agriculture, 11(10), 992. https://doi.org/10.3390/agriculture11100992
Farneti, B., Khomenko, I., Ajelli, M., Degasperi, M., Betta, E., Biasioli, F., & Giongo, L. (2025). Ester content of blueberry fruit can be ruled by tailored controlled atmosphere storage management. Postharvest Biology and Technology, 222, 113355. https://doi.org/10.1016/j.postharvbio.2024.113355.
Forney, C. F., Jordan, M. A., Pennell, K. M., & Fillmore, S. (2022). Controlled atmosphere storage impacts fruit quality and flavor chemistry of five cultivars of highbush blueberry (Vaccinium corymbosum). Postharvest Biology and Technology, 194, 112073. https://doi.org/10.1016/j.postharvbio.2022.112073
Freitas-Silva, O., de Souza Coelho, C. C., Trombete, F. M., & de Souza, A. M. (2024). Current development in ozone-based food preservation. In Food Packaging and Preservation Antimicrobial Materials and Technologies. 235-258 pp. https://doi.org/10.1016/B978-0-323-90044-7.00013-6
Frisón, L. N., Rivas, M. Z., Chiericatti, C. A., & Piagentini, A. M. (2021). Efecto de la radiación UV-C sobre la calidad y la flora fúngica contaminante natural de arándanos (Vaccinium corymbosum L., variedad O’Neal). INNOTEC, 22, e575. https://doi.org/10.26461/22.06
Gąstoł, M., & Błaszczyk, U. (2024). Effect of magnetic field and UV-C radiation on postharvest fruit properties. Agriculture, 14(7), 1167. https://doi.org/10.3390/agriculture14071167
González-Villagra, J., Reyes-Díaz, M., Alberdi, M., Mora, M. L., Ulloa-Inostroza, E. M., & Ribera-Fonseca, A. E. (2020). Impact of cold-storage and UV-C irradiation postharvest treatments on quality and antioxidant properties of fruits from blueberry cultivars grown in Southern Chile. Journal of Soil Science and Plant Nutrition, 20, 1751-1758. https://doi.org/10.1007/s42729-020-00247-5
Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and open synthesis. Campbell Systematic Reviews, 18, e1230. https://doi.org/10.1002/cl2.1230
Hahn, T., Tafi, E., Paul, A., Salvia, R., Falabella, P., & Zibek, S. (2020). Current state of chitin purification and chitosan production from insects. Journal of Chemical Technology & Biotechnology, 95(11), 2775-2795. https://doi.org/10.1002/jctb.6533
Haley, O. C., Pliakoni, E. D., Rivard, C., Nwadike, L., & Bhullar, M. (2023). The attenuation of microbial reduction in blueberry fruit following UV-LED treatment. Journal of Food Protection, 86(3), 100056. https://doi.org/10.1016/j.jfp.2023.100056
Hu, X., Sun, H., Yang, X., Cui, D., Wang, Y., Zhuang, J., Wang, X., Ma, R., & Jiang, L. (2021). Potential use of atmospheric cold plasma for postharvest preservation of blueberries. Postharvest Biology and Technology, 10(12). https://doi.org/10.1016/j.postharvbio.2021.111564
Izadi, H., Asadi, H., & Bemani, M. (2025). Chitin: a comparison between its main sources. Frontiers in Materials, 12. https://doi.org/10.3389/fmats.2025.1537067
Jaramillo, G., Contigiani, E. V., Coronel, M. B., Alzamora, S. M., García-Loredo, A., & Nieto, A. B. (2021). Study of UV-C treatments on postharvest life of blueberries ‘O'Neal’and correlation between structure and quality parameters. Heliyon, 7(6). https://doi.org/10.1016/j.heliyon.2021.e07190
Ji, Y., Hu, W., Liao, J., Jiang, A., Xiu, Z., Gaowa, S., Guan, Y., Yang, X., Feng, K., & Liu, C. (2020). Effect of atmospheric cold plasma treatment on antioxidant activities and reactive oxygen species production in postharvest blueberries during storage. Journal of the Science of Food and Agriculture, 100(15), 5586-5595. https://doi.org/10.1002/jsfa.10611
Khodaei, D., Hamidi-Esfahani, Z., & Rahmati, E. (2021). Effect of edible coatings on the shelf-life of fresh strawberries: A comparative study using TOPSIS-Shannon entropy method. NFS Journal, 23, 17-23. https://doi.org/10.1016/j.nfs.2021.02.003
Kowalczyk, B. A., Bieniasz, M., & Błaszczyk, J. (2025). Effect of Short-Term Storage in Modified Atmosphere Packaging (MAP) and Controlled Atmosphere (CA) on Total Polyphenol Content and Antioxidant Activity of Highbush Blueberry (Vaccinium corymbosum L.). Fruit. Foods, 9(3). https://doi.org/10.3390/agriculture15030253
Lare, M., Urroz, K., Rivadeneira, M., Bof, M., & Bello, F. (2023). Tasa respiratoria y producción de etileno durante la maduración de frutos de arándanos cultivados en el NEA. Investigación Joven, 10(2), 114.
Lemic, D., Zorić, B., Novak, A., Ivić, D., Andrijana, M., Viric, H. (2025). The Effectiveness of Ozone Technology Application in Extending the Shelf Life of Berry Fruit. Applied Fruit Science, 67, 35. https://doi.org/10.1007/s10341-025-01278-x
Li, J., Liu, G., Huang, Y., Pan, Q., Bai, Z., Li, C., Luo, H., & Xue, W. (2024) Comprehensive Evaluation of Optimized Preservation Strategies for Blueberries: An Assessment of Diverse Intervention Measures Based on Network Meta-Analysis. SSRN. https://dx.doi.org/10.2139/ssrn.5035323
Liao, J., Hou, B., & Huang, H. (2022). Preparation, properties and drug controlled release of chitin-based hydrogels: An updated review. Carbohydrate Polymers, 283, 119177. https://doi.org/10.1016/j.carbpol.2022.119177
Liu, C., Ding, J., Huang, P., Li, H., Liu, Y., Zhang, Y., Hu, X., Deng, S., Liu, Y., & Qin, W. (2023). Use of heat-shock and edible coating to improve the postharvest preservation of blueberries. Foods, 12(4), 789. https://doi.org/10.3390/foods12040789
Liu, D., Liu, Z., Lan, B., Ma, L., Huang, H., Xiao, G., Wang, Q., & Wang, F. (2024). 60Co γ-radiation at low-dose level alters volatile compounds of blueberry during storage. International Journal of Food Science and Technology, 59(6), 4081-4092. https://doi.org/10.1111/ijfs.17164
Liu, M., Zhang, A., Yu, H., Zeng, Q., & Liu, X. (2025). Postharvest application of ultraviolet-A and blue light irradiations boosted the accumulation of acetylated anthocyanins in the blueberry fruit and its potential regulatory mechanisms. Postharvest Biology and Technology, 222, 113371. https://doi.org/10.1016/j.postharvbio.2024.113371
Millas, P., Barra-Bucarei, L., Castro, J. F., Carrasco-Fernández, J., Chilian, J., Tapia, E., Santelices, C., Cisterna, V., Muñoz, V., Campos, J., Parra, K., & France, A. (2023). Identification and distribution of species of Neofusicoccum that cause blueberry stem blight in Chile. Mycologia, 115(3), 326-339. https://doi.org/10.1080/00275514.2023.2180976
Miles, T. D., & Hancock, J. F. (2022). Inheritance of resistance to anthracnose fruit rot caused by Colletotrichum fioriniae in highbush blueberry. International Journal of Fruit Science, 22(1), 160-169. https://doi.org/10.1080/15538362.2021.2022567
Moggia, C., & Lobos, G. A. (2023). Why measuring blueberry firmness at harvest is not enough to estimate postharvest softening after long term storage? A review. Postharvest Biology and Technology, 198, 112230. https://doi.org/10.1016/j.postharvbio.2022.112230
Munira, S., Khan, S. A. K. U., & Kabir, M. Y. (2024). Chitosan Maintains Postharvest Quality and Improves the Shelf Life of Fruits. Khulna University Studies, 21(2), 85-94. https://doi.org/10.53808/KUS.2024.21.02.1278-ls
Pellis, A., Guebitz, G. M., & Nyanhongo, G. S. (2022). Chitosan: sources, processing and modification techniques. Gels, 8(7), 393. https://doi.org/10.3390/gels8070393
Pi, X., Yang, Y., Sun, Y., Wang, X., Wan, Y., Fu, G., ... & Cheng, J. (2021). Food irradiation: A promising technology to produce hypoallergenic food with high quality. Critical Reviews in Food Science and Nutrition, 62(24), 6698-6713. https://doi.org/10.1080/10408398.2021.1904822
Piechowiak, T., Skóra, B., & Balawejder, M. (2020). Ozone treatment induces changes in antioxidative defense system in blueberry fruit during storage. Food and Bioprocess Technology, 13, 1240-1245. https://doi.org/10.1007/s11947-020-02450-9
Pinto, L., Palma, A., Cefola, M., Pace, B., D'Aquino, S., Carboni, C., & Baruzzi, F. (2020). Effect of modified atmosphere packaging (MAP) and gaseous ozone pre-packaging treatment on the physico-chemical, microbiological and sensory quality of small berry fruit. Food Packaging and Shelf Life, 26, 100573. https://doi.org/10.1016/j.fpsl.2020.100573
Pratap-Singh, A., Shojaei, M., Singh, A., Ye, Y., Mandal, R., Yan, Y., & Castellarin, S. D. (2023). Effects of pulsed light on the postharvest quality and shelf-life of highbush blueberries (cv. Draper). Applied Food Research, 3(1) https://doi.org/10.1016/j.afres.2023.100273
Ramos, S. R., Hernández, L. G. H., Gonzales, R. R. G., & Gutiérrez , P. G. (2021). Main diseases in postharvest blueberries, conventional and eco-friendly control methods: A review. Lwt, 149, 112046. https://doi.org/10.1016/j.lwt.2021.112046
Ramos-Bell, S., Hernández-Montiel, L. G., Velázquez-Estrada, R. M., Sánchez-Burgos, J. A., Bautista-Rosales, P. U., & Gutiérrez-Martínez, P. (2022b). Additive effect of alternative treatment to chemical control of Botrytis cinerea in blueberries. Revista Mexicana de Ingeniería Química, 21(3). https://doi.org/10.24275/rmiq/Bio2839
Ramos-Bell, S., Velázquez-Estrada, R. M., Hernández-Montiel, L. G., & Gutiérrez-Martínez, P. (2022a). Efecto antifúngico de quitosano y ácido salicílico sobre Botrytis cinerea aislado de arándano (Vaccinium corymbosum). Revista Mexicana de Ingeniería Química. e-Gnosis, 4, 1-5
Ramos-Bell, S., Diaz-Cayetano, G., Hernández-Montiel, L. G., Velázquez-Estrada, R. M., Montalvo-González, E., & Gutiérrez-Martínez, P. (2024). Conservación fisicoquímica de arándanos tratados con quitosano y ácido salicílico en poscosecha. Revista mexicana de ciencias agrícolas, 15(5). https://doi.org/10.29312/remexca.v15i5.3391
Ramos-Bell, S., Diaz, G., Hernández, L, Velázquez, R., Montalvo, E., & Gutiérrez, P. (2024). Conservación fisicoquímica de arándanos tratados con quitosano y ácido salicílico en poscosecha. Revista mexicana de ciencias agrícolas, 15(5), https://doi.org/10.29312/remexca.v15i5.3391
Rasweefali, M. K., Sabu, S., Azad, K. M., Rahman, M. R., Sunooj, K. V., Sasidharan, A., & Anoop, K. K. (2022). Influence of deproteinization and demineralization process sequences on the physicochemical and structural characteristics of chitin isolated from Deep-sea mud shrimp (Solenocera hextii). Advances in Biomarker Sciences and Technology, 4, 12-27. https://doi.org/10.1016/j.abst.2022.03.001
Rivera, S., Kerckhoffs, H., Sofkova-Bobcheva, S., Hutchins, D., & East, A. (2022). Influencia de la madurez de la cosecha y la tecnología de almacenamiento en las propiedades mecánicas de los arándanos. Biología y Tecnología de Poscosecha, 191, 111961. https://doi.org/10.1016/j.postharvbio.2022.111961
Rodas, A., Chavarro Porras, J. C., & Guerrero Álvarez, G. E. (2024). Desarrollo de plataforma de bajo costo para el monitoreo de condiciones microclimáticas favorables al surgimiento del hongo Botrytis Cinerea en el cultivo de mora de Castilla departamento Risaralda. Encuentro Internacional De Educación En Ingeniería. https://doi.org/10.26507/paper.3521
Romero, J., Albertos, I., Díez-Méndez, A., & Poveda, J. (2022). Control of postharvest diseases in berries through edible coatings and bacterial probiotics. Scientia Horticulturae, 304, 111326. https://doi.org/10.1016/j.scienta.2022.111326
Sánchez, G. J., Contigiani, E. V., Alzamora, S. M., & Santagapita, P. R. (2022). Changes on epicuticular waxes and colour induced by ozone in blueberries (Vaccinium corymbosum L.‘O’Neal’). Journal of Food Composition and Analysis, 108, 104404. https://doi.org/10.1016/j.jfca.2022.104404
Sharma, S., Nakano, K., Kumar, S., & Katiyar, V. (2024). Edible packaging to prolong postharvest shelf-life of fruits and vegetables: A review. Food Chemistry Advances, 100711. https://doi.org/10.1016/j.focha.2024.100711
Silva, S., Costa, E. M., Veiga, M., Morais, R. M., Calhau, C., & Pintado, M. (2020). Health promoting properties of blueberries: A review. Critical reviews in food science and nutrition, 60(2), 181-200. https://doi.org/10.1080/10408398.2018.1518895
Smrke, T., Cvelbar Weber, N., Veberic, R., Hudina, M., & Jakopic, J. (2021). Modified atmospheric CO2 levels for maintenance of fruit weight and nutritional quality upon long-term storage in blueberry (Vaccinium corymbosum l.) Liberty’. Horticulturae, 7(11), 478. https://doi.org/10.3390/horticulturae7110478
Stull, A. J., Cassidy, A., Djousse, L., Johnson, S. A., Krikorian, R., Lampe, J. W., Mukamal, K., Nieman, D., Porter, K., Rasmussen, H., Rimm, E., Stote, K & Tangney, C. (2024). The state of the science on the health benefits of blueberries: a perspective. Frontiers in Nutrition, 11, 1415737. https://doi.org/10.3389/fnut.2024.1415737
Sun, H., Hao, D., Tian, Y., Huang, Y., Wang, Y., Qin, G., Pei, J., & Abd El-Aty, A. M. (2022). Effect of chitosan/thyme oil coating and UV-C on the softening and ripening of postharvest blueberry fruits. Foods, 11(18), 2795. https://doi.org/10.3390/foods11182795
Sun, J., Wang, T., Liu, L., Li, Q., Liu, H., Wang, X., Liu, M., & Zhang, H. (2025). Preparation and Application of Edible Chitosan Coating Incorporating Natamycin. Polymers, 17(8), 1062. https://doi.org/10.3390/polym17081062
Tan, Y., Wang, X., Li, L., Zhang, Z., Wang, X., Wang, Y., Li, Y., & Bi, Y. (2025). Postharvest combined chitosan and melatonin treatment maintain antioxidant capacity and cell membrane integrity of fresh-cut broccoli by inducing reactive oxygen species scavenging system. LWT, 220, 117572. https://doi.org/10.1016/j.lwt.2025.117572
Tobar‐Bolaños, G., Casas‐Forero, N., Orellana‐Palma, P., & Petzold, G. (2021). Blueberry juice: Bioactive compounds, health impact, and concentration technologies—A review. Journal of food science, 86(12), 5062-5077. https://doi.org/10.1111/1750-3841.15944
Toledo-Guerrero, J. D., Álvarez, M. D., Herranz, B., Escribano, M. I., Merodio, C., Romero, I., & Sanchez-Ballesta, M. T. (2024). Effect of Short-Term High-CO2 Treatments on the Quality of Highbush and Rabbiteye Blueberries During Cold Storage. Plants, 13(23), 3398. https://doi.org/10.3390/plants13233398
Torres-Rodriguez, J. A., Reyes Pérez, J. J., Ramos, L. T. L., Gonzalo-Matute, L., Rueda-Puente, E. O., & Hernandez-Montiel, L. G. (2025). Chitosan as a Postharvest Alternative for the Control of Phytophthora capsici in Bell Pepper Fruits. Sci, 7(2), 37. https://doi.org/10.3390/sci7020037
Valenzuela-Ortiz, G., Gaxiola-Camacho, S. M., San-Martín-Hernández, C., Martínez-Téllez, M. Á., Aispuro-Hernández, E., Lizardi-Mendoza, J., & Quintana-Obregón, E. A. (2022). Chitosan sensitivity of fungi isolated from mango (Mangifera indica L.) with anthracnose. Molecules, 27(4), 1244. https://doi.org/10.3390/molecules27041244
Varaldo, A., Alchera, F., Giuggioli, N. R., & Giacalone, G. (2024). LED UVB postharvest treatments modify nutraceutical quality and physical properties of ‘Cargo’blueberries. Journal of Agriculture and Food Research, 15, 101040. https://doi.org/10.1016/j.jafr.2024.101040
Varela, R., Vidal, C., Larroca, A., García, C., & Albornoz, N. (2022). Tasa respiratoria de arándanos en condiciones aeróbicas. Influencia varietal y modelización. Ciencia, Docencia Y Tecnología Suplemento, 11(12), 1-27.
Vargas Rivadeneira, A., & Brison, J. (2023). X-Ray and E-Beam Irradiation for Phytosanitary Control in Navel Oranges and Blueberries. Jérémy, X-Ray and E-Beam Irradiation for Phytosanitary Control in Navel Oranges and Blueberries. SSRN. https://dx.doi.org/10.2139/ssrn.4540863
Wang, C., Tao, Y., Han, Y., Zhang, R., Li, L., & Gao, Y. (2023). Influences of subcellular Ca redistribution induced by γ irradiation on the fruit firmness of refrigerated blueberries. Postharvest Biology and Technology, 195, 112146. https://doi.org/10.1016/j.postharvbio.2022.112146
Wang, C., Zhang, S., Han, Y., Li, L., Ban, Z., & Lu, P. (2024). γ irradiation mediated the inhibitory effect of Ca2+ signals on softening of blueberry fruit during cold storage. Food Bioscience, 57, 103513. https://doi.org/10.1016/j.fbio.2023.103513
Wang, J., Yuan, Y., Liu, Y., Li, X., & Wu, S. (2024). Application of chitosan in fruit preservation: A review. Food chemistry: X, 101589. https://doi.org/10.1016/j.fochx.2024.101589
Wang, Y., Acharya, T., Malladi, A., Tsai. H., NeSmith, D., Doyle, J., and Nambeesan, S. (2022). Atypical Climacteric and Functional Ethylene Metabolism and Signaling During Fruit Ripening in Blueberry (Vaccinium sp.). Plant Sci. 13, 1-15. https://doi.org/10.3389/fpls.2022.932642
Wei, Z., Yang, H., Shi, J., Duan, Y., Wu, W., Lyu, L., & Li, W. (2023). Effects of different light wavelengths on fruit quality and gene expression of anthocyanin biosynthesis in blueberry (Vaccinium corymbosm). Cells, 12(9), 1225. https://doi.org/10.3390/cells12091225
Wu, W., Cao, S., Chen, H., Ruan, L., Lei, Q., Xu, S., & Li, J. (2022). Effects of ozone fumigation on the main postharvest pathogenic fungi Penicillium sp. and the storage quality of blueberry in Majiang county, China. Frontiers in Plant Science, 13, 898994. https://doi.org/10.3389/fpls.2022.898994
Xing, Y., Yang, S., Xu, Q., Xu, L., Zhu, D., Li, X., Shui, Y., Liu, X., & Bi, X. (2021). Effect of chitosan/Nano-TiO2 composite coating on the postharvest quality of blueberry fruit. Coatings, 11(5), 512. https://doi.org/10.3390/coatings11050512
Xu, Y., Chen, H., Zhang, L., & Xu, Y. (2023). Clove essential oil loaded chitosan nanocapsules on quality and shelf-life of blueberries. International Journal of Biological Macromolecules, 249, 126091. https://doi.org/10.1016/j.ijbiomac.2023.126091
Yan, D., Li, Y., Liu, Y., Li, N., Zhang, X., & Yan, C. (2021). Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Molecules, 26(23), 7136. https://doi.org/10.3390/molecules26237136
Yan, T., Ren, Y., Zhang, R., Li, K., Yang, B., Tong, M., & He, J. (2025). Biodegradable chitosan-based films decorated with biosynthetic copper oxide nanoparticle for post-harvest tomato preservation. International Journal of Biological Macromolecules, 295, 139595. https://doi.org/10.1016/j.ijbiomac.2025.139595
Yan, X., Yan, J., Pan, S., & Yuan, F. (2020). Changes of the aroma composition and other quality traits of blueberry ‘garden blue’during the cold storage and subsequent shelf life. Foods, 9(9), 1223. https://doi.org/10.3390/foods9091223
Zhang, W., Jiang, H., Cao, J., & Jiang, W. (2021). UV-C treatment controls brown rot in postharvest nectarine by regulating ROS metabolism and anthocyanin synthesis. Postharvest Biology and Technology, 180, 111613. https://doi.org/10.1016/j.postharvbio.2021.111613
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Luis Armando Pasco Sánchez, Janet Gonzales Valdivia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license







