Nutritional value and chemical composition of quinoa leaves (Chenopodium quinoa Wild.) at different phenological stages
DOI:
https://doi.org/10.57188/manglar.2023.044Abstract
This study aimed to assess the phenological profile and nutritional characteristics of the leaves of four different quinoa varieties. The researchers analyzed the chemical composition, total phenolic compounds (TPC), and antioxidant capacity (AC) of quinoa leaves at various stages of growth. Two varieties, Blanca Junín and Blanca Criolla, displayed similar phenological profiles, while Pasankalla and Salcedo had earlier flowering stages. The study found that the early stages of quinoa leaves contained higher levels of protein, moisture, ash, magnesium, TPC, and AC. In contrast, the late stages had higher amounts of carbohydrates, calcium, and crude fiber. The third phenological stage showed the highest protein content, with Pasankalla and Blanca Junín having 36.00 g/100g and 42.44 g/100g, respectively. Salcedo reached this protein content at the second phenological stage, with 38.25 g/100g. Quinoa leaves were also found to be rich in potassium, magnesium, and calcium, with Blanca Junín and Pasankalla having the highest calcium levels in the sixth phenological stage. The second phenological stage consistently yielded the highest levels of TPC and AC in all quinoa varieties. Overall, this study highlights the nutritional value of quinoa leaves and suggests that they could be a promising plant-based protein ingredient.
Downloads
References
AOAC. (2000). Official methods of analysis (16 th ed.). Washington, DC: AOAC International.
Baldeón, E. O., Alcañiz, M., Masot, R., Fuentes, E. M., Barat, J. M., & Grau, R. (2015). Voltammetry pulse array developed to determine the antioxidant activity of camu–camu (Myrciaria dubia (H.B.K.) McVaug) and tumbo (Passiflora mollisima (Kunth) L.H. Bailey) juices employing voltametric electronic tongues. Food Control, 54, 181-187. https://doi.org/10.1016/j.foodcont.2015.01.044
Cazzola, R., Della Porta, M., Manoni, M., Iotti, S., Pinotti, L., & Maier, J. A. (2020). Going to the roots of reduced magnesium dietary intake: A tradeoff between climate changes and sources. Heliyon, 6(11), e05390. https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e05390
Chirinos, R., Pedreschi, R., Rogez, H., Larondelle, Y., & Campos, D. (2013). Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties from the Peruvian Andean region. Industrial Crops and Products, 47, 145-152. https://doi.org/10.1016/j.indcrop.2013.02.025
Comettant-Rabanal, R., Carvalho, C. W. P., Ascheri, J. L. R., Chávez, D. W. H., & Germani, R. (2021). Extruded whole grain flours and sprout millet as functional ingredients for gluten-free bread. LWT, 150, 112042. https://doi.org/10.1016/j.lwt.2021.112042
Cormick, G., & Belizán, J. M. (2019). Calcium Intake and Health. Nutrients, 11(7). https://doi.org/10.3390/nu11071606
Costello, R. B., & Rosanoff, A. (2020). Chapter 21 - Magnesium. In B. P. Marriott, D. F. Birt, V. A. Stallings, & A. A. Yates (Eds.), Present Knowledge in Nutrition (Eleventh Edition) (pp. 349-373). Academic Press. https://doi.org/10.1016/B978-0-323-66162-1.00021-4
Gawlik-Dziki, U., Świeca, M., Sułkowski, M., Dziki, D., Baraniak, B., & Czyż, J. (2013). Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts – In vitro study. Food and Chemical Toxicology, 57, 154-160. https://doi.org/10.1016/j.fct.2013.03.023
Jiménez-Aguilar, D. M., & Grusak, M. A. (2015). Evaluation of Minerals, Phytochemical Compounds and Antioxidant Activity of Mexican, Central American, and African Green Leafy Vegetables. Plant Foods for Human Nutrition, 70(4), 357-364. https://doi.org/10.1007/s11130-015-0512-7
Kumssa, D. B., Joy, E. J. M., & Broadley, M. R. (2021). Global Trends (1961–2017) in Human Dietary Potassium Supplies. Nutrients, 13(4). https://doi.org/10.3390/nu13041369
Moyo, M., Amoo, S. O., Ncube, B., Ndhlala, A. R., Finnie, J. F., & Van Staden, J. (2013). Phytochemical and antioxidant properties of unconventional leafy vegetables consumed in southern Africa. South African Journal of Botany, 84, 65-71. https://doi.org/10.1016/j.sajb.2012.09.010
Pando, L., & Aguilar, E. (2016). Guía de cultivo de la quinua. FAO. Organización de las Naciones Unidas para la Alimentación y la Agricultura e Universidad Nacional Agraria La Molina.
Pathan, S., Eivazi, F., Valliyodan, B., Paul, K., Ndunguru, G., & Clark, K. (2019). Nutritional composition of the green leaves of quinoa (Chenopodium quinoa Willd.). Journal of Food Research, 8(6), 55-65.
Perry, J., & Ying, W. (2016). A review of physiological effects of soluble and insoluble dietary fibers. J Nutr Food Sci, 6(2), 476.
Repo-Carrasco-Valencia, Melgarejo-Cabello, R., S., & Pihlava, J. M. (2019). Nutritional Value and Bioactive Compounds in Quinoa (Chenopodium Quinoa Willd.), Kañiwa (Chenopodium pallidicaule Aellen) and Kiwicha (Amaranthus Caudatus L.). In P. G. Peiretti & F. Gai (Eds.), Quinoa. Nova Science Publishers. https://jukuri.luke.fi/handle/10024/544856
Silva, B., Stephan, M., Comettant-Rabanal, R., Freitas, S., Ascheri, J. L., & Rios, L. (2022). Production of Gluten-free Breads with Andean Beans. I South American Online Symposium on Food Technology, Engineering and Science. https://doi.org/10.29327/161828.1-26
Stoleru, V., Jacobsen, S.-E., Vitanescu, M., Jitareanu, G., Butnariu, M., Munteanu, N., Stan, T., Teliban, G. C., Cojocaru, A., & Mihalache, G. (2022). Nutritional and antinutritional compounds in leaves of quinoa. Food Bioscience, 45, 101494. https://doi.org/10.1016/j.fbio.2021.101494
Tauchen, J., Bortl, L., Huml, L., Miksatkova, P., Doskocil, I., Marsik, P., Villegas, P. P. P., Flores, Y. B., Van Damme, P., Lojka, B., Havlik, J., Lapcik, O., & Kokoska, L. (2016). Phenolic composition, antioxidant and anti-proliferative activities of edible and medicinal plants from the Peruvian Amazon. Revista Brasileira de Farmacognosia, 26(6), 728-737. https://doi.org/10.1016/j.bjp.2016.03.016
Villacrés, E., Quelal, M., Galarza, S., Iza, D., & Silva, E. (2022). Nutritional Value and Bioactive Compounds of Leaves and Grains from Quinoa (Chenopodium quinoa Willd.). Plants, 11(2), 213.
World Health Organization, W. (2012a). Guideline: Potassium Intake for Adults and Children; World Health Organization: Geneva, Swizerland.
World Health Organization, W. (2012b). Guideline: Sodium Intake for Adults and Children; World Health Organization: Geneva, Swizerland.
Złotek, U., Gawlik-Dziki, U., Dziki, D., Świeca, M., Nowak, R., & Martinez, E. (2019). Influence of Drying Temperature on Phenolic Acids Composition and Antioxidant Activity of Sprouts and Leaves of White and Red Quinoa. Journal of Chemistry, 2019, 7125169. https://doi.org/10.1155/2019/7125169
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Edwin O. Baldeón, Augusto Sánchez-Pizarro, Ritva Repo-Carrasco-Valencia, José M. Barat, Raúl Grau, Attilio Israel Cadenillas-Martínez, Raúl Comettant-Rabanal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license