Andean Solanaceae species with resistance to biotic factors, such as tree tomato (Solanum betaceum Cav.) rootstocks

Autores/as

  • Pablo Viteri-Díaz Programa de Fruticultura, Instituto Nacional de Investigaciones Agropecuarias (INIAP), Av. Interoceánica km 15 y Eloy Alfaro, Tumbaco. http://orcid.org/0000-0003-3119-5798
  • Wilson Vásquez-Castillo Ingeniería Agroindustrial, Universidad de las Américas (UDLA), Calle Queri, entre Av. De los Granados y Eloy Alfaro, Quito. http://orcid.org/0000-0002-2163-4243
  • Mauricio Racines-Oliva Ingeniería Agroindustrial, Universidad de las Américas (UDLA), Calle Queri, entre Av. De los Granados y Eloy Alfaro, Quito. http://orcid.org/0000-0003-4335-4311
  • William Viera-Arroyo Programa de Fruticultura, Instituto Nacional de Investigaciones Agropecuarias (INIAP), Av. Interoceánica km 15 y Eloy Alfaro, Tumbaco. http://orcid.org/0000-0003-4472-4126

DOI:

https://doi.org/10.17268/manglar.2020.052

Resumen

The infestation of the root system by nematodes (Meloidogyne incognita) and Fusarium solani to the rootneck hinders the production of tree tomato (Solanum betaceum Cav.), an Andean native fruit consumed in Ecuador and other countries. This paper evaluates the potential of different Ecuadorian Andean Solanaceae species (Solanum auriculatum, Solanum asperolanatum, Solanum arboreum and Nicotiana glauca), such as tree tomato rootstocks towards Fusarium and nematode resistance through controlled inoculation trials. The experimental design used was complete randomized in factorial arrangement with three factors. The variables were: fungus incubation time, incidence and lesion size, increase in nematode population, plant height increase and plant fresh weight. The most promising results for an extended open field evaluation were N. glauca (no incidences of Fusarium and 0.36 times increase in nematode population), followed by S. auriculatum. Fruit of these plants were assessed for chaconine and solanine content. The results indicated that the two rootstocks did not induce toxic substances in the fruits,  they are suitable for commercial production zones, enhance crop yield, increase productive plant life and use fewer chemicals to control soil pathogens.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Benítez, E.; Viera, W.; Garrido, P.; Flores F. 2020. Current research on Andean fruit crop diseases. En: Chong, P.; Newman, D.; Steinmacher, D. (Eds). Agricultural, forestry and bioindustry biotechnology and biodiscovery. Springer. Switzerland. pp. 387-401.

Cook, R. 2004. Nature and inheritance of nematode resistance in cereals. The Journal of Nematology 6:165–174.

Correia, S.I.; Canhoto, J.M. 2012. Biotechnology of tamarillo (Cyphomandra betacea): From in vitro cloning to genetic transformation. Scentia Horticulturae 148: 161–168.

Do Nascimento, G.E.; Corso, C.R.; De Paula, M.F.; Baggio, C.; Lacomini, M.; Cordeiro, L. 2015. Structure of an arabinogalactan from the edible tropical fruit tamarillo (Solanum betaceum) and its antinociceptive activity. Carbohydrate Polymers 116: 300–306.

Do Nascimento, G.E.; Hamm, L.A.; Baggio, C.H.; De Paula, M.F.; Lacomi, M.; Cordeiro, L. 2013. Structure of a galactoarabinoglucuronoxylan from tamarillo (Solanum betaceum), a tropical exotic fruit, and its biological activity. Food Chemestry 141: 510–516.

Feicán, C.; Encalda, C.; Becerril, A. 2016. Agronomic description of the tamarillo (Solanum betaceum Cav.) crop. Agroproductividad 9: 78-86.

Gannasin, S.P.; Ramakrishnan, Y.; Adzahan, N.M.; Muhammad, K. 2012. Functional and preliminary characterisation of hydrocolloid from tamarillo (Solanum betaceum Cav.) puree. Molecules 17: 6869–6885.

Ito, L.A.; Gaion, L.A.; Galatti, F.S.; Braz, L.T.; Santos, J.M. 2014. Resistência de porta-enxertos de cucurbitáceas a nematóides e compatibilidade da enxertia em melão, Horticultura Brasileira 32: 297–302.

López-Pérez, J.A.; Le Strange, M.; Kaloshian, I.; Ploeg, A. 2006. Differential response of Mi gene-resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). Crop Protection 25(4): 382–388.

Martínez-Ballesta, M.C.; Alcaraz-López, C.; Muries, B.; Mota, C.; Carvajal, M. 2010. Physiological aspects of rootstock-scion interactions. Scentia Horticulturae 127: 112–118.

McAvoy, T.; Freeman, J.H.; Rideout, S.L.; Olson, S.M.; Paret, M.L. 2012. Evaluation of grafting using hybrid rootstocks for management of bacterial wilt in field tomato production. HortScience 47: 621–625.

Navarrete, X.; Ron, L.; Viteri, P.; Viera, W. 2018. Parasitism of the root knot nematode Meloidogyne incognita (Kofoid and White) Chitwood in five wild Solanaceae species. Revista Facultad Nacional de Agronomía 71: 8367-8373.

Nelson, P.E.; Toussoun, T.A.; Marasas, W.F.O. 1983. Fusarium species: an illustrated manual for identification. Pennsylvania State University Press. Pennsylvania. USA. 206 pp.

Pinzón-Gómez, L.P.; Deaquiz, Y.A.; Álvarez-Herrera, J.G. 2014. Postharvest behavior of tamarillo (Solanum betaceum Cav.) treated with CaCl2 under different storage temperatures. Agronomía Colombiana 32: 238–245.

Rivard, C.L.; O’Connell, S.; Peet, M.M.; Louws, F.J. 2010. Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Disease 94: 1015–1021.

Romanucci, V.; Di Fabio, G.; Di Marino, C.; Davinelli, S.; Scapagnini, G.; Zarrelli, A. 2018. Evaluation of new strategies to reduce the total content of α-solanine and α-chaconine in potatoes. Phytochemistry Letters 23: 116-119.

Schütz, L. 2014. Survey of agricultural practices and alternatives to pesticide use to conserve water resources in the Mojanda Watershed, Ecuador. Journal on Food Agriculture and Society 2: 56-66.

Siddiqui, Z.A. 2004. Effects of plant growth promoting bacteria and composed organic fertilizers on the reproduction of Meloidogyne incognita and tomato growth. Bioresourse Technology 95: 223–227.

Souza, L.T.; Michereff, S.J.; Laranjeira, D; Andrade, D.; Ferraz, E.; Lima, G.; Reis, A. 2010. Reação de genótipos de tomateiro às raças 2 e 3 de Fusarium oxysporum f. sp. lycopersici Horticultura Brasileira 28: 102–106.

Sucha, L; Tomsik, P. 2016. The Steroidal Glycoalkaloids from Solanaceae: Toxic Effect, Antitumour Activity and Mechanism of Action. Planta Medica 82: 379-387.

Vargas, Y.; Nicolalde, J.; Alcívar, W.; Moncayo, L.; Caicedo, C; Pico, J.; Ron, L.; Viera, W. 2018. Response of wild Solanaceae to Meloidogyne incognita inoculation and its graft compatibility with tree tomato (Solanum betaceum). Nematropica 48: 126-135.

Viera, W.; Campaña, D.; Lastra, A.; Vásquez, W.; Viteri, P.; Sotomayor, A. 2017. Micorrizas nativas y su efecto en dos portainjertos de tomate de árbol (Solanum betaceum Cav.). Bioagro 29: 105-114.

Descargas

Publicado

12/31/2020

Número

Sección

ARTÍCULO ORIGINAL

Cómo citar

Andean Solanaceae species with resistance to biotic factors, such as tree tomato (Solanum betaceum Cav.) rootstocks. (2020). Manglar, 17(4), 347-352. https://doi.org/10.17268/manglar.2020.052

Artículos más leídos del mismo autor/a