Uso de hidrolizados de pescado en la acuicultura: una revisión de algunos resultados beneficiosos en dietas acuícolas
DOI:
https://doi.org/10.17268/manglar.2021.029Resumo
Las industrias pesqueras y de acuicultura generan, cada año, un conjunto de residuos o desechos que incluyen piel, cabeza, vísceras, recortes y espinazos, representando más del 60% en volumen productivo. Estos residuos tienen altos contenidos de proteínas, y normalmente son procesados en productos de bajo valor comercial, como alimentos para animales, harina de residuos y fertilizantes. En los últimos años, se han venido desarrollando tecnologías para el aprovechamiento de éstos residuos y convertirlos en bioproductos de mayor valor agregado, como son los hidrolizados de proteínas, con interesantes aplicaciones en la alimentación animal. Los hidrolizados proteicos de pescado son productos obtenidos de la degradación enzimática o química de las proteínas de pescado en péptidos más pequeños, aminoácidos libres y nucleótidos, obteniéndose un alto contenido proteico con buen balance de aminoácidos, alta digestibilidad y mejor aprovechamiento de sus nutrientes. La inclusión de éstos hidrolizados en los alimentos acuícolas puede mejorar el crecimiento y la eficiencia alimentaria de los organismos acuáticos en cultivo. Este artículo presenta una revisión sobre investigaciones de la inclusión de hidrolizados proteicos de pescado en dietas experimentales para peces, crustáceos, moluscos y algas, y los efectos en los desempeños productivos, en los últimos veinte años.
Downloads
Referências
Aguila, J., Cuzon, G., Pascual, C., Domingues, P. M., Gaxiola, G., Sánchez, A., Maldonado, T., & Rosas, C. (2007). The effects of fish hydrolysate (CPSP) level on Octopus maya (Voss and Solis) diet: Digestive enzyme activity, blood metabolites, and energy balance. Aquaculture, 273(4), 641-655.
Akness, A., Hope, B., Høstmark, Ø., & Albrektsen, S. (2006a). Inclusion of size fractionated fish hydrolysate in high plant protein diets for Atlantic cod, Gadus morhua. Aquaculture, 261(3), 1102-1110.
Akness, A., Hope, B., Jönsson, E., Björnsson, B. T., & Albrektsen, S. (2006b). Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed high plant protein diets. I: Growth, growth regulation and feed utilization. Aquaculture, 261(1), 305-317.
Bui, H. T. D., Khosravi, S., Fournier, V., Herault, M., & Lee, K.-J. (2014). Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates. Aquaculture, 418-419, 11-16.
Cai, Z., Li, W., Mai, K., Xu, W., Zhang, Y., & Ai, Q. (2015). Effects of dietary size-fractionated fish hydrolysates on growth, activities of digestive enzymes and aminotransferases and expression of some protein metabolism related genes in large yellow croaker (Larimichthys crocea) larvae. Aquaculture, 440, 40-47.
Casaclang, J. R., Gregorio, A. C., Resuello, R. B., Reyes, C. J. A., Bernardo-Fernandez, J., & Gonzales-Plasus, M. M. (2017). Fish hydrolysate derived from fish waste increased the growth of Kappaphycus alvarezii, 10(5), 1150-1156.
Chalamaiah, M., Dinesh, B., Hemalatha, R., & Jyothirmayi, T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 135(4), 3020-3038.
Chotikachinda, R., Tantikitti, C., Benjakul, S., Rustad, T., & Kumarnsit, E. (2013). Production of protein hydrolysates from skipjack tuna (Katsuwonus pelamis) viscera as feeding attractants for Asian seabass (Lates calcarifer). Aquaculture Nutrition, 19(5), 773-784.
Córdova-Murueta, J. H., & Garcı́a-Carreño, F. L. (2002). Nutritive value of squid and hydrolyzed protein supplement in shrimp feed. Aquaculture, 210(1), 371-384.
Costa, M., Costas, B., Machado, M., Teixeira, C., Fernández-Boo, S., Sá, T., Batista, S., Marques, A., Miranda, F., & Valente, L. M. P. (2020). Anchovy and giant squid hydrolysates can enhance growth and the immune response of European seabass (Dicentrarchus labrax) fed plant-protein-based diets. Aquaculture, 523, 735182.
Domingues, P. M., López, N., Muñoz, J. A., Maldonado, T., Gaxiola, G., & Rosas, C. (2007). Effects of a dry pelleted diet on growth and survival of the Yucatan octopus, Octopus maya. Aquaculture Nutrition, 13(4), 273-280.
Egerton, S., Wan, A., Murphy, K., Collins, F., Ahern, G., Sugrue, I., Busca, K., Egan, F., Muller, N., Whooley, J., McGinnity, P., Culloty, S., Ross, R. P., & Stanton, C. (2020). Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Scientific Reports, 10(1), 4194.
FAO. (2020). El estado mundial de la pesca y la acuicultura 2020. La sostenibilidad en acción. FAO.
Galla, N. R., Pamidighantam, P. R., Akula, S., & Karakala, B. (2012). Functional properties and in vitro antioxidant activity of roe protein hydrolysates of Channa striatus and Labeo rohita. Food Chemistry, 135(3), 1479-1484.
Goosen, N. J., de Wet, L. F., & Görgens, J. F. (2014). The effects of protein hydrolysates on the immunity and growth of the abalone Haliotis midae. Aquaculture, 428-429, 243-248.
Grey, M., Forster, I., Dominy, W., Ako, H., & Giesen, A. F. (2009). Validation of a Feeding Stimulant Bioassay Using Fish Hydrolysates for the Pacific White Shrimp, Litopenaeus vannamei. J. of the World Aquaculture Society, 40(4), 547-555.
Ha, N., Jesus, G. F. A., Gonçalves, A. F. N., de Oliveira, N. S., Sugai, J. K., Pessatti, M. L., Mouriño, J. L. P., & El Hadi Perez Fabregat, T. (2019). Sardine (Sardinella spp.) protein hydrolysate as growth promoter in South American catfish (Rhamdia quelen) feeding: Productive performance, digestive enzymes activity, morphometry and intestinal microbiology. Aquaculture, 500, 99-106.
Halim, N. R. A., Yusof, H. M., & Sarbon, N. M. (2016). Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review. Trends in Food Science & Technology, 51, 24-33.
Han, D., Shan, X., Zhang, W., Chen, Y., Wang, Q., Li, Z., Zhang, G., Xu, P., Li, J., Xie, S., Mai, K., Tang, Q., & Silva, S. S. D. (2018). A revisit to fishmeal usage and associated consequences in Chinese aquaculture. Reviews in Aquaculture, 10(2), 493-507.
He, S., Franco, C., & Zhang, W. (2013). Functions, applications and production of protein hydrolysates from fish processing co-products. Food Research International, 50(1), 289-297.
Hernández, C., Olvera-Novoa, M. A., Smith, D. M., Hardy, R. W., & Gonzalez-Rodriguez, B. (2011). Enhancement of shrimp Litopenaeus vannamei diets based on terrestrial protein sources via the inclusion of tuna by-product protein hydrolysates. Aquaculture, 317(1), 117-123.
Ho, T. C. W., Li‐Chan, E. C. Y., Skura, B. J., Higgs, D. A., & Dosanjh, B. (2014). Pacific hake (Merluccius productus Ayres, 1855) hydrolysates as feed attractants for juvenile Chinook salmon (Oncorhynchus tshawytscha Walbaum, 1792). Aquaculture Research, 45(7), 1140-1152.
Khosravi, S., Rahimnejad, S., Herault, M., Fournier, V., Lee, C.-R., Dio Bui, H. T., Jeong, J.-B., & Lee, K.-J. (2015). Effects of protein hydrolysates supplementation in low fish meal diets on growth performance, innate immunity and disease resistance of red sea bream Pagrus major. Fish & Shellfish Immunology, 45(2), 858-868.
Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2009). Characteristics and Use of Yellow Stripe Trevally Hydrolysate as Culture Media. Journal of Food Science, 74(6), S219-S225.
Kotzamanis, Y. P., Gisbert, E., Gatesoupe, F. J., Zambonino Infante, J., & Cahu, C. (2007). Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147(1), 205-214.
Kvåle, A., Harboe, T., Mangor‐Jensen, A., & Hamre, K. (2009). Effects of protein hydrolysate in weaning diets for Atlantic cod (Gadus morhua L.) and Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture Nutrition, 15(2), 218-227.
Leduc, A., Zatylny-Gaudin, C., Robert, M., Corre, E., Corguille, G. L., Castel, H., Lefevre-Scelles, A., Fournier, V., Gisbert, E., Andree, K. B., & Henry, J. (2018). Dietary aquaculture by-product hydrolysates: Impact on the transcriptomic response of the intestinal mucosa of European seabass (Dicentrarchus labrax) fed low fish meal diets. BMC Genomics, 19(1), 396.
Li, X., Wang, L., Zhang, C., Rahimnejad, S., Song, K., & Yuan, X. (2018). Effects of Supplementing Low-Molecular-Weight Fish Hydrolysate in High Soybean Meal Diets on Growth, Antioxidant Activity and Non-Specific Immune Response of Pacific White Shrimp (Litopenaeus vannamei). Turkish Journal of Fisheries and Aquatic Sciences, 18(5), 717-727.
Liang, M., Wang, J., Chang, Q., & Mai, K. (2006). Effects of different levels of fish protein hydrolysate in the diet on the nonspecific immunity of Japanese sea bass, Lateolabrax japonicus (Cuvieret Valenciennes, 1828). Aquaculture Research, 37(1), 102-106.
Macedo-Viegas, E. M., Portella, M. C., & Carneiro, D. J. (2004). Utilization of Fish Protein Hydrolysate in Prepared Diets for Pacu, Piaractus mesopotamicus, Larvae. Journal of Applied Aquaculture, 14(3-4), 101-112.
Mamauag, R. E. P., & Ragaza, J. A. (2016). Growth and feed performance, digestibility and acute stress response of juvenile grouper (Epinephelus fuscoguttatus) fed diets with hydrolysate from milkfish offal. Aquaculture Research, 48(4), 1638-1647.
Martínez-Alvarez, O., Chamorro, S., & Brenes, A. (2015). Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Research International, 73, 204-212.
Masuda, Y., Jinbo, T., Imaizumi, H., Furuita, H., Matsunari, H., Murashita, K., Fujimoto, H., Nagao, J., & Kawakami, Y. (2013). A step forward in development of fish protein hydrolysate-based diets for larvae of Japanese eel Anguilla japonica. Fisheries Science, 79(4), 681-688.
Nguyen, H. T. M., Pérez-Gálvez, R., & Bergé, J. P. (2012). Effect of diets containing tuna head hydrolysates on the survival and growth of shrimp Penaeus vannamei. Aquaculture, 324-325, 127-134.
Ospina-Salazar, G. H., Ríos-Durán, M. G., Toledo-Cuevas, E. M., & Martínez-Palacios, C. A. (2016). The effects of fish hydrolysate and soy protein isolate on the growth performance, body composition and digestibility of juvenile pike silverside, Chirostoma estor. Animal Feed Science and Technology, 220, 168-179.
Ovissipour, M., Kenari, A. A., Nazari, R., Motamedzadegan, A., & Rasco, B. (2014). Tuna viscera protein hydrolysate: Nutritive and disease resistance properties for Persian sturgeon (Acipenser persicus L.) larvae. Aquaculture Research, 45(4), 591-601.
Quinto, B. P. T., Albuquerque, J. V., Bezerra, R. S., Peixoto, S., & Soares, R. (2018). Replacement of fishmeal by two types of fish protein hydrolysate in feed for postlarval shrimp Litopenaeus vannamei. Aquaculture Nutrition, 24(2), 768-776.
Rathore, S. S., Chandravanshi, A., Chandravanshi, P., Srinivasa, K. H., Rakesh, K., Mamun, M. A. A., & Nasren, S. (2018). Optimization of Fish Hydrolysate Preparation and its Effect on Growth and Feed Utilization of Magur (Clarias batrachus). Bull. Env. Pharmacol. Life Sci., 7(11), 78-83.
Refstie, S., Olli, J. J., & Standal, H. (2004). Feed intake, growth, and protein utilisation by post-smolt Atlantic salmon (Salmo salar) in response to graded levels of fish protein hydrolysate in the diet. Aquaculture, 239(1), 331-349.
Rosas, C., Cuzon, G., Pascual, C., Gaxiola, G., Chay, D., López, N., Maldonado, T., & Domingues, P. M. (2007). Energy balance of Octopus maya fed crab or an artificial diet. Marine Biology, 152(2), 371-381.
Sary, C., Paris, L. D. de, Bernardi, D. M., Lewandowiski, V., Signor, A., & Boscolo, W. R. (2017). Tilapia by-product hydrolysate powder in diets for Nile tilapia larvae. Acta Scientiarum. Animal Sciences, 39(1), 1-6.
Sheriff, S. A., Sundaram, B., Ramamoorthy, B., & Ponnusamy, P. (2014). Synthesis and in vitro antioxidant functions of protein hydrolysate from backbones of Rastrelliger kanagurta by proteolytic enzymes. Saudi Journal of Biological Sciences, 21(1), 19-26.
Siddik, M. A. B., Howieson, J., Fotedar, R., & Partridge, G. J. (2021). Enzymatic fish protein hydrolysates in finfish aquaculture: A review. Reviews in Aquaculture, 13(1), 406-430.
Silva, T. C. da, Rocha, J. D. M., Moreira, P., Signor, A., Boscolo, W. R., Silva, T. C. da, Rocha, J. D. M., Moreira, P., Signor, A., & Boscolo, W. R. (2017). Fish protein hydrolysate in diets for Nile tilapia post-larvae. Pesquisa Agropecuária Brasileira, 52(7), 485-492.
Silva, J. F. X., Ribeiro, K., Silva, J. F., Cahú, T. B., & Bezerra, R. S. (2014). Utilization of tilapia processing waste for the production of fish protein hydrolysate. Animal Feed Science and Technology, 196, 96-106.
Srichanun, M., Tantikitti, C., Kortner, T. M., Krogdahl, Å., & Chotikachinda, R. (2014). Effects of different protein hydrolysate products and levels on growth, survival rate and digestive capacity in Asian seabass (Lates calcarifer Bloch) larvae. Aquaculture, 428-429, 195-202.
Tang, H., Wu, T., Zhao, Z., & Pan, X. (2008). Effects of fish protein hydrolysate on growth performance and humoral immune response in large yellow croaker (Pseudosciaena crocea R.). Journal of Zhejiang University SCIENCE B, 9(9), 684-690.
Valle, B. C. S., Dantas, E. M., Silva, J. F. X., Bezerra, R. S., Correia, E. S., Peixoto, S. R. M., & Soares, R. B. (2015). Replacement of fishmeal by fish protein hydrolysate and biofloc in the diets of Litopenaeus vannamei postlarvae. Aquaculture Nutrition, 21(1), 105-112.
Villamil, O., Váquiro, H., & Solanilla, J. F. (2017). Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chemistry, 224, 160-171.
Wei, Y., Liang, M., Mu, Y., Zheng, K., & Xu, H. (2016). The effect of ultrafiltered fish protein hydrolysate level on growth performance, protein digestibility and mRNA expression of PepT1 in juvenile turbot (Scophthalmus maximus L.). Aquaculture Nutrition, 22(5), 1006-1017.
Wei, Yuliang, Liang, M., & Xu, H. (2019). Fish protein hydrolysate affected amino acid absorption and related gene expressions of IGF-1/AKT pathways in turbot (Scophthalmus maximus). Aquaculture Nutrition, 26(1), 145-155.
Wisuthiphaet, N., Kongruang, S., & Chamcheun, C. (2015). Production of Fish Protein Hydrolysates by Acid and Enzymatic Hydrolysis. Journal of Medical and Bioengineering, 4(6), 466-470.
Wosniak, B., Hessa Melim, E. W., Ha, N., Uczay, J., Pilatti, C., Pessatti, M. L., & Perez Fabregat, T. E. H. (2016). Effect of diets containing different types of sardine waste (Sardinella sp.) protein hydrolysate on the performance and intestinal morphometry of silver catfish juveniles (Rhamdia quelen). Latin American Journal of Aquatic Research, 44(5), 957-966.
Xu, H., Mu, Y., Zhang, Y., Li, J., Liang, M., Zheng, K., & Wei, Y. (2016). Graded levels of fish protein hydrolysate in high plant diets for turbot (Scophthalmus maximus): Effects on growth performance and lipid accumulation. Aquaculture, 454, 140-147.
Zamora-Sillero, J., Gharsallaoui, A., & Prentice, C. (2018). Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: An Overview. Marine Biotechnology, 20(2), 118-130.
Zheng, K., Liang, M., Yao, H., Wang, J., & Chang, Q. (2012). Effect of dietary fish protein hydrolysate on growth, feed utilization and IGF-I levels of Japanese flounder (Paralichthys olivaceus). Aquaculture Nutrition, 18(3), 297-303.
Zheng, K., Liang M., Yao H., Wang J., & Chang Qing. (2013). Effect of size-fractionated fish protein hydrolysate on growth and feed utilization of turbot (Scophthalmus maximus L.). Aquaculture Research, 44(6), 895-902.
Downloads
Publicado
Edição
Secção
Licença
Direitos de Autor (c) 2022 Alessandra L. Cardoza Ramirez, Mariafernanda G. Guerra Espinoza, Alfredo R. Palomino Ramos
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição 4.0.
Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license