Diversidad de especies nativas de Halomonas con capacidad nitrificante aisladas de criaderos de Litopenaeus vannamei
DOI:
https://doi.org/10.57188/manglar.2023.049Resumo
El objetivo de la investigación fue identificar cuáles son las especies del género Halomonas, con capacidad nitrificante, aisladas de sedimentos de criaderos de Litopenaeus vannamei provenientes de langostineras de Tumbes-Perú. A partir del sedimento de 3 criaderos de langostinos en tiempo de cosecha, se obtuvo una muestra representativa, a la cual se realizó un pre-enriquecimiento en Caldo Marino por 48 horas, luego se cultivó en Agar Marino, hasta la observación de colonias características del género Halomonas. Los cultivos obtenidos fueron identificados fenotípicamente a nivel de especie, para luego evaluar su capacidad nitrificante según la metodología de Griess-llosvay. Como resultados se obtuvo el aislamiento de 5 cultivos bacterianos, dos identificados como H. sulfidaeris y 3 como H. salina; todos los cultivos evidenciaron capacidad de reducir el nitrato a nitrito eliminando el amonio del medio. Se concluye que en el sedimento de criaderos de Litopenaeus vannamei ubicadas en Tumbes-Perú, están presentes las especies H. sulfidaeris y H. salina, con capacidad nitrificante, que permiten la eliminación del amonio, la cual se desarrolla como una opción eficaz para el tratamiento de agua residuales salinas de amonio.
Downloads
Referências
Abosamaha, A., Williamson, M. P., & Gilmour, D. J. (2022). Utilization and accumulation of compatible solutes in Halomonas pacifica: A species of moderately halophilic bacteria isolated from a saline lake in South Libya. Access Microbiology, 4(5). https://doi.org/10.1099/acmi.0.000359
Agha, M., Ennen, J. R., Bower, D. S., Nowakowski, A. J., Sweat, S. C., & Todd, B. D. (2018). Salinity tolerances and use of saline environments by freshwater turtles: Implications of sea level rise. Biological Reviews, 93(3), 1634–1648. https://doi.org/10.1111/brv.12410
Ahmad, E., Sharma, S. K., Kashyap, A. S., Manzar, N., Sahu, P. K., Singh, U. B., Singh, H. V., & Sharma, P. K. (2023). Evaluation of osmotolerant potential of Halomonas sulfidaeris MV-19 isolated from a Mud Volcano. Current Microbiology, 80(4). https://doi.org/10.1007/s00284-023-03202-6
Bibi, F., Yasir, M., Alvi, S., Azhar, E., Al-Ghamdi, A., Abuzenadah, A., Raoult, D., & Angelakis, E. (2017). ‘Halomonas saudii ’ sp. nov., a new bacterial species isolated from marine plant Halocnemum strobilaceum. New Microbes and New Infections, 15, 42–43. https://doi.org/10.1016/j.nmni.2016.11.007
Cardinali-Rezende, J., Nahat, R. A., Guzmán Moreno, C. W., Carreño Farfán, C. R., Silva, L. F., Taciro, M. K., & Gomez, J. G. (2016). Draft Genome Sequence of Halomonas sp. HG01, a Polyhydroxyalkanoate-Accumulating Strain Isolated from Peru. Genome announcements, 4(1), e01598-15. https://doi.org/10.1128/genomeA.01598-15
Chen, Y. G., Zhang, Y. Q., Huang, H. Y., Klenk, H. P., Tang, S. K., Huang, K., Chen, Q. H., Cui, X. L., & Li, W. J. (2009). Halomonas zhanjiangensis sp. nov., a halophilic bacterium isolated from a sea urchin. International Journal Of Systematic And Evolutionary Microbiology, 59(11), 2888–2893. https://doi.org/10.1099/ijs.0.010173-0
FAO - Food and Agriculture Organization (2006). Programa de información de especies acuáticas. Penaeus vannamei. Programa de información de especies acuáticas. Texto de Briggs, M. In: Departamento de Pesca y Acuicultura de la FAO [en línea]. Roma. Recuperado 7 April 2006. Disponible en: http://www.fao.org/fishery/culturedspecies/Penaeus_vannamei/es#tcNA00EA
Duan, Y., Xiong, D., Wang, Y., Li, H., Dong, H., & Zhang, J. (2021). Toxic effects of ammonia and thermal stress on the intestinal microbiota and transcriptomic and metabolomic responses of Litopenaeus Vannamei. Science of The Total Environment, 754, 141867. https://doi.org/10.1016/j.scitotenv.2020.141867
Gaboyer, F., Vandenabeele-Trambouze, O., Cao, J., Ciobanu, M. C., Jebbar, M., Le Romancer, M., & Alain, K. (2014). Physiological features of Halomonas lionensis sp. nov., a novel bacterium isolated from a Mediterranean Sea sediment. Research in microbiology, 165(7), 490–500. https://doi.org/10.1016/j.resmic.2014.07.009
Gan, L., Long, X., Zhang, H., Hou, Y., Tian, J., Zhang, Y., & Tian, Y. (2018). Halomonas saliphila sp. nov., a moderately halophilic bacterium isolated from a saline soil. International Journal of Systematic and Evolutionary Microbiology, 68(4), 1153–1159. https://doi.org/10.1099/ijsem.0.002644
Guan, T.-W., Lin, Y.-J., Ou, M.-Y., & Chen, K.-B. (2020). Isolation and diversity of sediment bacteria in the hypersaline aiding Lake, China. PLOS ONE, 15(7). https://doi.org/10.1371/journal.pone.0236006
Guo, Y., Zhou, X., Li, Y., Li, K., Wang, C., Liu, J., Yan, D., Liu, Y., Yang, D., & Xing, J. (2013). Heterotrophic nitrification and aerobic denitrification by a novel Halomonas campisalis. Biotechnology letters, 35(12), 2045–2049. https://doi.org/10.1007/s10529-013-1294-3
Hintersatz, C., Singh, S., Rojas, L. A., Kretzschmar, J., Wei, S. T.-S., Khambhati, K., Kutschke, S., Lehmann, F., Singh, V., Jain, R., & Pollmann, K. (2023). Halomonas Gemina sp. nov. and Halomonas llamarensis sp. nov., two siderophore-producing organisms isolated from high-altitude salars of the Atacama Desert. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1194916
Hu, J., Yan, J., Wu, L., Bao, Y., Yu, D., & Li, J. (2022). Insight into halotolerance of a robust heterotrophic nitrifying and aerobic denitrifying bacterium Halomonas salifodinae. Bioresource Technology, 351, 126925. https://doi.org/10.1016/j.biortech.2022.126925
Huang, F., Pan, L., He, Z., Zhang, M., & Zhang, M. (2021). Heterotrophic nitrification-aerobic denitrification characteristics and antibiotic resistance of two bacterial consortia from Marinomonas and Halomonas with effective nitrogen removal in mariculture wastewater. Journal of Environmental Management, 279, 111786. https://doi.org/10.1016/j.jenvman.2020.111786
Kasan, N. A., Ghazali, N. A., Ikhwanuddin, M., & Ibrahim, Z. (2017). Isolation of Potential Bacteria as Inoculum for Biofloc Formation in Pacific Whiteleg Shrimp, Litopenaeus vannamei Culture Ponds. Pakistan journal of biological sciences: PJBS, 20(6), 306–313. https://doi.org/10.3923/pjbs.2017.306.313
Kaye, J. Z., Márquez, M. C., Ventosa, A., & Baross, J. A. (2004). Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. International journal of systematic and evolutionary microbiology, 54(2), 499–511. https://doi.org/10.1099/ijs.0.02799-0
Kim, K. K., Lee, J.-S., & Stevens, D. A. (2013). Microbiology and epidemiology of halomonas species. Future Microbiology, 8(12), 1559–1573. https://doi.org/10.2217/fmb.13.108
Kim, K. K., Jin, L., Yang, H. C., & Lee, S. T. (2007). Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water. International journal of systematic and evolutionary microbiology, 57(4), 675–681. https://doi.org/10.1099/ijs.0.64767-0
Koh, H. W., Rani, S., Kim, S. J., Moon, E., Nam, S. W., Rhee, S. K., & Park, S. J. (2017). Halomonas aestuarii sp. nov., a moderately halophilic bacterium isolated from a tidal flat. International journal of systematic and evolutionary microbiology, 67(11), 4298–4303. https://doi.org/10.1099/ijsem.0.001824.
Le Borgne, S., Paniagua, D., & Vazquez-Duhalt, R. (2008). Biodegradation of organic pollutants by halophilic bacteria and archaea. Journal of molecular microbiology and biotechnology, 15(2-3), 74–92. https://doi.org/10.1159/000121323.
Lefebvre, O., & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: a literature review. Water research, 40(20), 3671–3682. https://doi.org/10.1016/j.watres.2006.08.027
Li, Q., Zhang, Y., Juck, D., Fortin, N., Greer, C. W., & Tang, Q. (2010b). Phylogenetic analysis of bacterial communities in the shrimp and sea cucumber aquaculture environment in northern China by culturing and PCR–DGGE. Aquaculture International, 18(6), 977–990. https://doi.org/10.1007/s10499-009-9316-9
Li, X., Lu, H., Wang, Q., Yang, H., Yang, H., Wu, J., & Huang, H. (2022). Halomonas binhaiensis sp. nov., isolated from saline-alkali soil. International Journal of Systematic and Evolutionary Microbiology, 72(12). https://doi.org/10.1099/ijsem.0.005652
Liebgott, P. P., Labat, M., Amouric, A., Tholozan, J. L., & Lorquin, J. (2008). Tyrosol degradation via the homogentisic acid pathway in a newly isolated Halomonas strain from olive processing effluents. Journal of Applied Microbiology, 105(6), 2084–2095. https://doi.org/10.1111/j.1365-2672.2008.03925.x
Liu, Y., Ding, H., Sun, Y., Li, Y., & Lu, A. (2020). Genome analysis of a marine bacterium Halomonas sp. and its role in nitrate reduction under the influence of Photoelectrons. Microorganisms, 8(10), 1529. https://doi.org/10.3390/microorganisms8101529
Mamani, J. I., Pacheco, K. B., Elorrieta, P., Romoacca, P., Castelan, H., Davila, S., Sierra, J. L., & Quispe-Ricalde, M. A. (2019). Draft Genome Sequence of Halomonas elongata MH25661 Isolated from a Saline Creek in the Andes of Peru. Microbiology resource announcements, 8(1), e00934-18. https://doi.org/10.1128/MRA.00934-18
Mata, J. A., Martínez-Cánovas, J., Quesada, E., & Béjar, V. (2002). A detailed phenotypic characterisation of the type strains of Halomonas species. Systematic and applied microbiology, 25(3), 360–375. https://doi.org/10.1078/0723-2020-00122.
Manya, W. F., Lizárraga, W. C., Mormontoy, C. G., Taira, M. A., & Ramírez, P. S. (2021). Complete Genome Sequence of Halomonas sp. Strain SH5A2, a Dye-Degrading Halotolerant Bacterium Isolated from the Salinas and Aguada Blanca National Reserve in Perú. Microbiology Resource Announ-cements, 10(2). https://doi.org/10.1128/mra.01083-20
Ming, H., Ji, W., Li, M., Zhao, Z., Cheng, L., Niu, M., Zhang, L., Wang, Y., & Nie, G. (2020). Halomonas lactosivorans sp. nov., isolated from salt-lake sediment. International Journal of Systematic and Evolutionary Microbiology, 70(5), 3504–3512. https://doi.org/10.1099/ijsem.0.004209
Mnif, S., Chamkha, M., & Sayadi, S. (2009). Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. Journal of applied microbiology, 107(3), 785–794. https://doi.org/10.1111/j.1365-2672.2009.04251.x
Patel, J. H., & Thaker, V. S. (2015). Whole genome sequencing of Halomonas sp. SUBG004 isolated from Little Rann of Kutch, a desert of India. Genomics data, 6, 19–20. https://doi.org/10.1016/j.gdata.2015.07.027
Paungfoo, C., Prasertsan, P., Burrell, P. C., Intrasungkha, N., & Blackall, L. L. (2007). Nitrifying bacterial communities in an aquaculture wastewater treatment system using fluorescence in situ hybridization (FISH), 16S rRNA gene cloning, and phylogenetic analysis. Biotechnology and bioengineering, 97(4), 985–990. https://doi.org/10.1002/bit.21270
Poli, A., Esposito, E., Orlando, P., Lama, L., Giordano, A., de Appolonia, F., Nicolaus, B., & Gambacorta, A. (2007). Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Systematic and Applied Microbiology, 30(1), 31–38. https://doi.org/10.1016/j.syapm.2006.03.003.
Purkhold, U., Pommerening-Röser, A., Juretschko, S., Schmid, M. C., Koops, H. P., & Wagner, M. (2000). Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and environmental microbiology, 66(12), 5368–5382. https://doi.org/10.1128/AEM.66.12.5368-5382.2000
Quillaguamán, J., Hatti-Kaul, R., Mattiasson, B., Alvarez, M. T., & Delgado, O. (2004). Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. International journal of systematic and evolutionary microbiology, 54(3), 721–725. https://doi.org/10.1099/ijs.0.02800-0
Qiu, X., Yu, L., Cao, X., Wu, H., Xu, G., & Tang, X. (2021). Halomonas sedimenti sp. nov., a halotolerant bacterium isolated from deep-sea sediment of the Southwest Indian Ocean. Current Microbiology, 78(4), 1662–1669. https://doi.org/10.1007/s00284-021-02425-9
Romano, I., Abbate, M., Poli, A., & D'Orazio, L. (2019). Bio-cleaning of nitrate salt efflorescence on stone samples using extremophilic bacteria. Scientific reports, 9(1), 1668. https://doi.org/10.1038/s41598-018-38187-x
Saito, M., Nishigata, A., Galipon, J., & Arakawa, K. (2019). Complete genome sequence of Halomonas sulfidaeris strain ESULFIDE1 isolated from a metal sulfide rock at a depth of 2200 meters, obtained using nanopore sequencing. Microbiology Resource Announcements, 8(23). https://doi.org/10.1128/mra.00327-19
Sangnoi, Y., Chankaew, S., & O-Thong, S. (2017). Indigenous Halomonas spp., the potential nitrifying bacteria for saline ammonium waste water treatment. Pak J Biol Sci: PJBS, 20(1), 52–58. https://doi.org/10.3923/pjbs.2017.52.58
Singh, R. V., Sharma, H., Koul, A., & Babu, V. (2018). Exploring a broad spectrum nitrilase from moderately halophilic bacterium Halomonas sp. IIIMB2797 isolated from saline lake. Journal of basic microbiology, 58(10), 867–874. https://doi.org/10.1002/jobm.201800168
Vreeland, R. H. (2015). Halomonas. Bergey’s Manual of Systematics of Archaea and Bacteria, 1–19. https://doi.org/10.1002/9781118960608.gbm01190
Vreeland, R. H., Litchfield, C. D., Martin, E. L., & Elliot, E. (1980). Halomonas elongata, a New Genus and Species of Extremely Salt-Tolerant Bacteria. Int. j. syst. Bacterial., 30(2), 485–495. https://doi.org/10.1099/00207713-30-2-485
Xue, M., Wen, C. Q., Liu, L., Fang, B. Z., Salam, N., Huang, X. M., Liu, Y. F., Xiao, M., & Li, W. J. (2018). Halomonas litopenaei sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium isolated from a shrimp hatchery. International journal of systematic and evolutionary microbiology, 68(12), 3914–3921. https://doi.org/10.1099/ijsem.0.003090
Yang, C., Wang, Z., Li, Y., Niu, Y., Du, M., He, X., Ma, C., Tang, H., & Xu, P. (2010). Metabolic versatility of halotolerant and alkaliphilic strains of Halomonas isolated from alkaline black liquor. Bioresource Technology, 101(17), 6778–6784. https://doi.org/10.1016/j.biortech.2010.03.108
Yuan, D., Zheng, L., Liu, Y.-X., Cheng, H., Ding, A., Wang, X., Tan, Q., Wang, X., Xing, Y., Xie, E., Wu, H., Wang, S., & Zhu, G. (2022). Nitrifiers cooperate to produce nitrous oxide in plateau wetland sediments. Environ. Sci. Technol., 57(1), 810–821. https://doi.org/10.1021/acs.est.2c06234
Ye, J.-W., & Chen, G.-Q. (2021). Halomonas as a chassis. Essays Biochem, 65, 393–403. https://doi.org/10.1042/ebc20200159
Downloads
Publicado
Edição
Secção
Licença
Direitos de Autor (c) 2023 Silvana Pérez Tejeda, Melissa Rojas Suárez, Gardenia Prado Chávarri, David Zavaleta-Verde
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição 4.0.
Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license