Food Revolution: Exploring the Future of Food with 3D Technology – A Systematic Literature Review

Authors

  • Soledad Yalupalin-Sedano Facultad de Ingeniería, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Tayacaja, Perú.
  • Nelssi Gimena Chamorro-Diaz Facultad de Ingeniería, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Tayacaja, Perú.
  • Rossy Fiorella Huaman-Moran Facultad de Ingeniería, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Tayacaja, Perú.
  • Christian Omar Larrea Cerna Facultad de Ingeniería, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Tayacaja, Perú.
  • David Callirgos Romero Facultad de Agronomia Eliseu Maciel, Universidad Federal de Pelotas, Pelotas, Río Grande del Sur, Brasil.

DOI:

https://doi.org/10.57188/

Keywords:

3D printing, Nutritional personalization, Technological innovation

Abstract

3D food printing enables the creation of customized foods, reduces waste, optimizes production, and develops more sustainable products. However, it faces challenges such as high costs, lack of standardization, limited regulations, and the need to build consumer trust.

Despite these obstacles, 3D printing holds promising potential. Ongoing research and development are expected to improve accessibility, efficiency, and sustainability in food production and consumption. Collaboration among scientists, technologists, and the food industry will be key to overcoming existing barriers and maximizing this technology’s opportunities.

This systematic review, using PICOC, PRISMA, and Bibliometrix methodologies, reveals a promising landscape where 3D printing can address critical challenges such as growing food demand, environmental sustainability, and nutritional personalization.

Downloads

Download data is not yet available.

References

Agrawal, S., Oza, P., Kakkar, R., Tanwar, S., Jetani, V., Undhad, J., & Singh, A. (2024). Analysis and recommendation system-based on PRISMA checklist to write systematic review. Assessing Writing, 61, 100866. https://doi.org/10.1016/j.asw.2024.100866

Ammar, A., Howladar, S. M., Siddeeg, A., Refai, M. Y., Aqlan, F. M., Afifi, M., & Ali, H. A. (2020b). Effect of the addition of alhydwan flour on the physicochemical, functional properties and microstructure of wheat bread. Journal Of Food Measurement & Characterization, 14(5), 2907-2916. https://doi.org/10.1007/s11694-020-00535-9

Anwar, M. A., Suprihatin, N., Sasongko, N. A., Najib, M., & Pranoto, B. (2024). Challenges and prospects of multilayer plastic waste management in several countries: A Systematic Literature Review. Case Studies In Chemical And Environmental Engineering, 100911. https://doi.org/10.1016/j.cscee.2024.100911

Aouadi, B., Zaukuu, J. Z., Vitális, F., Bodor, Z., Fehér, O., Gillay, Z., Bazar, G., & Kovacs, Z. (2020). Historical Evolution and Food Control Achievements of Near Infrared Spectroscopy, Electronic Nose, and Electronic Tongue—Critical Overview. Sensors, 20(19), 5479. https://doi.org/10.3390/s20195479

Aouadi, B., Zaukuu, J., Vitális F., Fehér, O., Gillay, Z., Bazar, J., & Kovacs, Z. (2020). Historical Evolution and Food Control Achievements of Near Infrared Spectroscopy, Electronic Nose, and Electronic Tongue—Critical Overview. Sensors, 20 (19). 10.3390/s20195479

Aragón, C. L. M. (2022). Una revisión sistemática de la literatura del aprendizaje organizacional y el desempeño. Visión De Futuro, 27(1), 1–23. https://doi.org/10.36995/j.visiondefuturo.2023.27.01.001.es

Aria, M., & Cuccurullo, C. (2017d). Bibliometrix : An R-tool for comprehensive science mapping analysis. Journal Of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Cevallos-Culqui, A., Pons, C., & Rodriguez, G. (2023). Semi-supervised learning models for document classification: A systematic review and meta-analysis. Inteligencia Artificial, 26(72), 81–111. https://doi.org/10.4114/intartif.vol26iss72pp81-111

Chao, C., Nam, H. K., Park, H. J., & Kim, H. W. (2024). Potentials of 3D printing in nutritional and textural customization of personalized food for elderly with dysphagia. Applied Biological Chemistry, 67(1). https://doi.org/10.1186/s13765-023-00854-7

Chao, E., Yan, X., & Fan, L. (2024). Fabrication of edible inks for 3D printing as a dysphagia food: A emerging application of bigels. Food Hydrocolloids, 110463. https://doi.org/10.1016/j.foodhyd.2024.110463

Chen, B., Huang, J., Liu, Y., Liu, H., Zhao, Y., & Wang, J. J. (2021). Effects of the curcumin-mediated photodynamic inactivation on the quality of cooked oysters with Vibrio parahaemolyticus during storage at different temperature. International Journal of Food Microbiology, 345, 109152. https://doi.org/10.1016/j.ijfoodmicro.2021.109152

Chen, G., Song, Y., Zhang, H., Sun, Y., Zeng, D., Cheng, Z., & Yan, B. (2024). Characteristics of pollutant generation from 3D-printed photocured waste combustion. Waste Management, 187, 61-69. https://doi.org/10.1016/j.wasman.2024.07.010

Cheng, Y., Yuqing, H., Xiao, L., Gao, W., Kang, X., Sui, J., & Cui, B. (2024). Impact of starch amylose and amylopectin on the rheological and 3D printing properties of corn starch. International Journal of Biological Macromolecules, 278, 134403. https://doi.org/10.1016/j.ijbiomac.2024.134403

Costello, C., Oveysi, Z., Dundar, B., & McGarvey, R. (2021). Assessment of the Effect of Urban Agriculture on Achieving a Localized Food System Centered on Chicago, IL Using Robust Optimization. Environmental Science & Technology, 55(4), 2684-2694. https://doi.org/10.1021/acs.est.0c04118

Dancausa Millán, M. G., & Millán Vázquez De La Torre, M. G. (2024). 3D food printing: Technological advances, personalization and future challenges in the food industry. International Journal of Gastronomy and Food Science, 37, 100963. https://doi.org/10.1016/j.ijgfs.2024.100963

Davis, K. F., Downs, S., & Gephart, J. A. (2020b). Towards food supply chain resilience to environmental shocks. Nature Food, 2(1), 54-65. https://doi.org/10.1038/s43016-020-00196-3

Devra, R. S., Srivastava, N., Vadali, M., & Arora, A. (2024). Recycling, thermophysical characterisation and assessment of low-density polythene waste as feedstock for 3D printing. Materials Today Sustainability, 100949. https://doi.org/10.1016/j.mtsust.2024.100949

Du, Y., Tang, T., Zhang, M., Mujumdar, A. S., Phuhongsung, P., & Yu, D. (2023). Double‐nozzle 3D ‐printed bean paste buns: Effect of filling ratio and microwave heating time. Journal of Texture Studies, 54(5), 671-680. https://doi.org/10.1111/jtxs.12765

Feng, L., Xu, Y., Xiao, Y., Song, J., Li, D., Zhang, Z., Liu, C., Liu, C., Jiang, N., Zhang, M., & Zhou, C. (2020). Effects of pre-drying treatments combined with explosion puffing drying on the physicochemical properties, antioxidant activities and flavor characteristics of apples. Food Chemistry, 338, 128015. https://doi.org/10.1016/j.foodchem.2020.128015

Freville, E., Sergienko, J. P., Mujica, R., Rey, C., & Bras, J. (2024). Novel technologies for producing tridimensional cellulosic materials for packaging: A review. Carbohydrate Polymers, 342, 122413. https://doi.org/10.1016/j.carbpol.2024.122413

Gavahian, M. (2024). Opinion on the prospects of emerging food processing technologies to achieve sustainability in the industry by reduced energy consumption, waste reduction and valorisation, and improved food nutrition. International Journal of Food Science & Technology, 59(11), 8135-8140. https://doi.org/10.1111/ijfs.17525

Halba, K., Griffor, E., Lbath, A., & Dahbura, A. (2023). IoT Capabilities Composition and Decomposition: A Systematic Review. IEEE Access, 11, 29959-30007. https://doi.org/10.1109/access.2023.3260182

Haynes, E., Bhagtani, D., Iese, V., Brown, C., Fesaitu, J., Hambleton, I., Badrie, N., Kroll, F., Guell, C., Brugulat-Panes, A., Ville, A. S., Benjamin-Neelon, S., Foley, L., Samuels, T., Wairiu, M., Forouhi, N., Unwin, N., & Team, N. o. B. o. T. C. F. A. H. (2020). Food Sources and Dietary Quality in Small Island Developing States: Development of Methods and Policy Relevant Novel Survey Data from the Pacific and Caribbean. Nutrients, 12(11), 3350. https://doi.org/10.3390/nu12113350

Huang, J., Zhang, M., Mujumdar, A. S., Wang, Y., & Li, C. (2024c). Improvement of 3D printing age-friendly brown rice food on rough texture, swallowability, and in vitro digestibility using fermentation properties of different probiotics. Food Chemistry, 460, 140701. https://doi.org/10.1016/j.foodchem.2024.140701

Jiang, Q., Chen, K., Cai, Z., Li, Y., & Zhang, H. (2024). Phase inversion of regulable bigels co-stabilized by Chlorella pyrenoidosa protein and beeswax: In-vitro digestion and food 3D printing. International Journal of Biological Macromolecules, 134540. https://doi.org/10.1016/j.ijbiomac.2024.134540

Kaminaries, S., Scordobeki, A., Zoidou, E., & Moatsou, G. (2019). Biochemical characteristics of reduced-fat cheese made from high-heat treated goat’s milk supplemented with Penicillium candidum. Journal of the Hellenic Veterinary Medical Society, 70(3), 1669. https://doi.org/10.12681/jhvms.21791

Kanwal, N., Zhang, M., Zeb, M., Batool, U., Khan, I., & Rui, L. (2024). From Plate to Palate: Sustainable Solutions for Upcycling Food Waste in Restaurants and Catering. Trends In Food Science & Technology, 104687. https://doi.org/10.1016/j.tifs.2024.104687

Kathirawan, K., Mohamad, S., & Raoov, M. (2024). 3D-integrated membrane protected micro-solid-phase extraction of sulfonamides in food samples: An innovative approach. Microchemical Journal, 111204. https://doi.org/10.1016/j.microc.2024.111204

Kaur, A., Virdi, A. S., Singh, N., Singh, A., & Kaler, R. S. S. (2020). Effect of degree of milling and defatting on proximate composition, functional and texture characteristics of gluten-free muffin of bran of long-grain indica rice cultivars. Food Chemistry, 345, 128861. https://doi.org/10.1016/j.foodchem.2020.128861

Klerks, M., Bernal, M. J., Roman, S., Bodenstab, S., Gil, A., & Sanchez-Siles, L. M. (2019). Infant Cereals: Current Status, Challenges, and Future Opportunities for Whole Grains. Nutrients, 11(2), 473. https://doi.org/10.3390/nu11020473

Krishna, D. V., & Sankar, M. R. (2024). Synthesis and characterization of SiO2 nanoparticles reinforced 3D printable gelatin/PVA/guar gum/ hydroxypropyl methylcellulose-based biocomposite hydrogel. Industrial Crops and Products, 218, 118977. https://doi.org/10.1016/j.indcrop.2024.118977

Landschaft, A., Antweiler, D., Mackay, S., Kugler, S., Rüping, S., Wrobel, S., Höres, T., & Allende-Cid, H. (2024). Implementation and evaluation of an additional GPT-4-based reviewer in PRISMA-based medical systematic literature reviews. International Journal of Medical Informatics, 189, 105531. https://doi.org/10.1016/j.ijmedinf.2024.105531

Lee, C. P., Ng, M. J. Y., Chian, N. M. Y., & Hashimoto, M. (2024). Multi-material Direct Ink Writing 3D Food Printing using Multi-channel Nozzle. Future Foods, 10, 100376. https://doi.org/10.1016/j.fufo.2024.100376

Li, C., Zhu, J., Qiao, S., Yang, Y., Dai, H., Chen, H., Ma, L., Zhang, Y., & Wang, H. (2025). Oil-water interfacial dual-phase synergistic adsorption of capsanthin-cyanophycin in gelatin based high internal phase emulsions for multi-nozzle 3D printing. Food Hydrocolloids, 158, 110493. https://doi.org/10.1016/j.foodhyd.2024.110493

Li, G., Wang, B., Lv, W., Yang, L., & Xiao, H. (2024). Effect of κ-carrageenan on physicochemical and 3D printing properties of walnut protein-stabilized emulsion gel. Food Hydrocolloids, 156, 110288. https://doi.org/10.1016/j.foodhyd.2024.110288

Li, Z., Zhang, L., Shan, Y., Zhao, Y., Dai, L., Wang, Y., Sun, Q., McClements, D. J., Cheng, Y., & Xu, X. (2024). Fabrication of high internal phase emulsions (HIPEs) using pea protein isolate-hyaluronic acid-tannic acid complexes: Application of curcumin-loaded HIPEs as edible inks for 3D food printing. Food Chemistry, 460, 140402. https://doi.org/10.1016/j.foodchem.2024.140402

Liao, G., Sun, E., Kana, E. G., Huang, H., Sanusi, I. A., Qu, P., Jin, H., Liu, J., & Shuai, L. (2024). Renewable hemicellulose-based materials for value-added applications. Carbohydrate Polymers, 341, 122351. https://doi.org/10.1016/j.carbpol.2024.122351

literature review and meta-analysis for environmental science research. MethodsX,7,100777. https://doi.org/10.1016/j.mex.2019.100777

Liu, Y., Chen, K., Zeng, Q., Wang, P., & Zhang, Y. (2025). The impact of dietary fibers on the construction and molecular network of extrusion-based 3D-printed chicken noodles: Unlocking the potential of specialized functional food. Food Chemistry, 463, 141065. https://doi.org/10.1016/j.foodchem.2024.141065

López-Camacho, A., Grande, M. J., Carazo-Álvarez, D., & La Rubia, M. (2024). Antiviral properties of polylactic acid and nano-TiO2 for 3D printing. Materials Letters, 137039. https://doi.org/10.1016/j.matlet.2024.137039

Lv, X., Huang, Y., Hu, M., Wang, Y., Dai, D., Ma, L., Zhang, Y., & Dai, H. (2024). Recent advances in nanocellulose based hydrogels: Preparation strategy, typical properties and food application. International Journal of Biological Macromolecules, 277, 134015. https://doi.org/10.1016/j.ijbiomac.2024.134015

McClements, D. J., Barrangou, R., Hill, C., Kokini, J. L., Lila, M. A., Meyer, A. S., & Yu, L. (2020). Building a Resilient, Sustainable, and Healthier Food Supply Through Innovation and Technology. Annual Review of Food Science and Technology, 12(1), 1-28. https://doi.org/10.1146/annurev-food-092220-030824

Meenakshi, M., Ramasamy, S. K., Venkatesan, G., Lee, J., Barathi, S., Kandasamy, S., & Sarangi, P. K. (2024). The comprehensive review on 3D printing- pharmaceutical drug delivery and personalized food and nutrition. Food Chemistry, 140348. https://doi.org/10.1016/j.foodchem.2024.140348

Mengist, W., Soromessa, T., & Legese, G. (2020). Method for conducting systematic

Mohamad, Y. S., Yu, M., Felder, M., Meunier, V., Litster, J., & Salman, A. D. (2024). Systematic study to improve the powder feeding performance and reducing the percentage of fines in roller compactor. Powder Technology, 446, 120158. https://doi.org/10.1016/j.powtec.2024.120158

Muhammad, A. H., Asma, M., Hamed, Y. S., Hameed, A., Abdullah, N., Jian, W., Peilong, S., Kai, Y., & Ming, C. (2024). Enhancing cellulose-stabilized multiphase/Pickering emulsions systems: A molecular dynamics perspective. International Journal Of Biological Macromolecules, 277, 134244. https://doi.org/10.1016/j.ijbiomac.2024.134244

Niu, Z., Li, K., Guo, Y., Zhao, G., Wu, K., Hou, X., Qiao, D., Jiang, F., Zhang, B., & Xie, F. (2024). Assembly behavior and nano-scale microstructure of tamarind gum/xanthan synergistic interaction gels. Food Hydrocolloids, 110392. https://doi.org/10.1016/j.foodhyd.2024.110392

Ochoa, W., Larrinaga, F., & Pérez, A. (2023). Context-aware workflow management for smart manufacturing: A literature review of semantic web-based approaches. Future Generation Computer Systems, 145, 38-55. https://doi.org/10.1016/j.future.2023.03.017

Outrequin, T. C. R., Gamonpilas, C., Sreearunothai, P., Deepaisarn, S., & Siriwatwechakul, W. (2024). Machine Learning assisted evaluation of the filament spreading during extrusion-based 3D food printing: Impact of the rheological and printing parameters. Journal Of Food Engineering, 381, 112166. https://doi.org/10.1016/j.jfoodeng.2024.112166

Outrequin, T., Gamonpilas, C., Deepaisarn, S., Siriwatwechakul W. (2024). Machine learning assisted evaluation of the filament spreading during extrusion-based 3D food printing: Impact of the rheological and printing parameters. Journal of Food Engineering. 381. https://doi.org/10.1016/j.jfoodeng.2024.112166

Pešić, M. B., Pešić, M. M., Bezbradica, J., Stanojević, A. B., Ivković, P., Milinčić, D. D., Demin, M., Kostić, A. Ž., Dojčinović, B., & Stanojević, S. P. (2023). Okara-Enriched Gluten-Free Bread: Nutritional, Antioxidant and Sensory Properties. Molecules, 28(10), 4098. https://doi.org/10.3390/molecules28104098

Radoš, K., Pastor, K., Kojić, J., Drakula, S., Dujmić, F., Novotni, D., & Čukelj Mustač, N. (2023). Influence of Infill Level and Post-Processing on Physical Parameters and Betaine Content of Enriched 3D-Printed Sweet Snacks. Foods, 12(24), 4417. https://doi.org/10.3390/foods12244417

Riantiningtyas, R. R., Sager, V. F., Chow, C. Y., Thybo, C. D., Bredie, W. L., & Ahrné, L. (2021). 3D printing of a high protein yoghurt-based gel: Effect of protein enrichment and gelatine on physical and sensory properties. Food Research International, 147, 110517. https://doi.org/10.1016/j.foodres.2021.110517

Sajdakowska, M., Gębski, J., Guzek, D., Gutkowska, K., & Żakowska-Biemans, S. (2020). Dairy Products Quality from a Consumer Point of View: Study among Polish Adults. Nutrients, 12(5), 1503. https://doi.org/10.3390/nu12051503

Saleh, M. A., Soliman, M., Mousa, M. A., Elsamanty, M., & Radwan, A. G. (2020). Design and implementation of variable inclined air pillow soft pneumatic actuator suitable for bioimpedance applications. Sensors And Actuators a Physical, 314, 112272. https://doi.org/10.1016/j.sna.2020.112272

Schüler, K., Marques, D. M., Gusmão, A., Jabouille, M., Leite, M., Cabral, J. M., Sanjuan-Alberte, P., & Ferreira, F. C. (2024). 3D printing of plant-based fat inks towards manufacturing complex cellular agriculture products with fatty structures. Food Hydrocolloids, 157, 110369. https://doi.org/10.1016/j.foodhyd.2024.110369

Sogin, J. H., Lopez-Velasco, G., Yordem, B., Lingle, C. K., David, J. M., Çobo, M., & Worobo, R. W. (2020). Implementation of ATP and Microbial Indicator Testing for Hygiene Monitoring in a Tofu Production Facility Improves Product Quality and Hygienic Conditions of Food Contact Surfaces: a Case Study. Applied And Environmental Microbiology, 87(5). https://doi.org/10.1128/aem.02278-20

Soleymani, S., Naghib, S. M., & Mozafari. (2024). An overview of cultured meat and stem cell bioprinting: How to make it, challenges and prospects, environmental effects, society’s culture and the influence of religions. Journal of Agriculture and Food Research, 18, 101307. https://doi.org/10.1016/j.jafr.2024.101307

Strother, H., Moss, R., & McSweeney, M. B. (2020). Comparison of3Dprinted and molded carrots produced with gelatin, guar gum and xanthan gum. Journal Of Texture Studies, 51(6), 852-860. https://doi.org/10.1111/jtxs.12545

Thapa, A., Nishad, S., Biswas, D., & Roy, S. (2023). A comprehensive review on artificial intelligence assisted technologies in food industry. Food Bioscience, 56, 103231. https://doi.org/10.1016/j.fbio.2023.103231

Tian, H., Chen, X., Wu, J., Wu, J., Huang, J., Cai, X., & Wang, S. (2024). Nondestructive frozen protein ink: Antifreeze mechanism, processability, and application in 3D printing. International Journal of Biological Macromolecules, 134009. https://doi.org/10.1016/j.ijbiomac.2024.134009

Wahjuningsih, S. B., Anggraeni, D., Siqhny, Z. D., Triputranto, A., Elianarni, D., Purwitasari, L., & Azkia, M. N. (2023). Formulation, Nutritional and Sensory Evaluation of Mocaf (Modified Cassava Flour) Noodles with Latoh (Caulerpa lentillifera) Addition. Current Research in Nutrition and Food Science Journal, 11(3), 1008-1021. https://doi.org/10.12944/CRNFSJ.11.3.08

Wang, H., Fang, X., Sutar, P. P., Meng, J., Wang, J., Yu, X., & Xiao, H. (2020). Effects of vacuum-steam pulsed blanching on drying kinetics, colour, phytochemical contents, antioxidant capacity of carrot and the mechanism of carrot quality changes revealed by texture, microstructure and ultrastructure. Food Chemistry, 338, 127799. https://doi.org/10.1016/j.foodchem.2020.127799

Wang, Y., Aluko, R., McClements, D. J., Yu, Y., Xu, X., Sun, Q., Wang, Q., Jiao, B., & Dai, L. (2024). Emulsion gel-based inks for 3D printing of foods for dysphagia patients: High internal type emulsion gel-biopolymer systems. Food Hydrocolloids, 110340. https://doi.org/10.1016/j.foodhyd.2024.110340

Wang, Z., Chen, F., Deng, Y., Tang, X., Li, P., Zhao, Z., Zhang, M., & Liu, G. (2024). Texture characterization of 3D printed fibrous whey protein-starch composite emulsion gels as dysphagia food: A comparative study on starch type. Food Chemistry, 458, 140302. https://doi.org/10.1016/j.foodchem.2024.140302

Wu, Y., Li, Z., Yang, L., Zheng, H., & Xue, C. (2024). Construction of 3D printed salmon fillet simulants: improving printing performance by blending corn starch and flaxseed oil with pea protein and post-printing texturization via transglutaminase. Food Hydrocolloids, 155, 110242. https://doi.org/10.1016/j.foodhyd.2024.110242

Xue, Z., Brooks, J. T., Quart, Z., Stevens, E. T., Kable, M. E., Heidenreich, J., McLeod, J., & Marco, M. L. (2021). Microbiota Assessments for the Identification and Confirmation of Slit Defect-Causing Bacteria in Milk and Cheddar Cheese. mSystems, 6(1). https://doi.org/10.1128/msystems.01114-20

Yan, T., Lv, Z., Tian, P., Lin, M., Lin, W., Huang, S., & Chen, Y. (2020). Semi-solid extrusion 3D printing ODFs: an individual drug delivery system for small scale pharmacy. Drug Development and Industrial Pharmacy, 46(4), 531-538. https://doi.org/10.1080/03639045.2020.1734018

Yang, F., Cui, Y., Guo, Y., Yang, W., Liu, X., & Liu, X. (2021). Internal structure and textural properties of a milk protein composite gel construct produced by three‐dimensional printing. Journal of Food Science, 86(5), 1917-1927. https://doi.org/10.1111/1750-3841.15727

Zhang, X., Dong, X., Jia, Y., Ren, X., Xu, L., Liu, X., Li, F., Ju, H., & Wei, Q. (2024). Ligand Regulation Strategy Enhanced Anodic Electrochemiluminescence of Copper Nanoclusters for Enrofloxacin Trace Determination. Sensors And Actuators B Chemical, 136193. https://doi.org/10.1016/j.snb.2024.136193

Zhong, Y., Wang, B., Lv, W., Wu, Y., Lv, Y., Sheng C. (2024). Investigaciones y aplicaciones recientes en alimentos a base de lípidos y biotintas con lípidos incorporados para impresión 3D. Food Chemistry. 458. https://doi.org/10.1016/j.foodchem.2024.140294

Downloads

Published

2025-12-16

How to Cite

Yalupalin-Sedano, S., Chamorro-Diaz, N. G., Huaman-Moran, R. F., Larrea Cerna, C. O., & Callirgos Romero, D. (2025). Food Revolution: Exploring the Future of Food with 3D Technology – A Systematic Literature Review. Manglar, 22(4), 609-619. https://doi.org/10.57188/

Most read articles by the same author(s)