Industria 4.0 y su relación con la automatización en la industria Alimentaria: Una revisión sistemática y bibliométrica
DOI:
https://doi.org/10.57188/manglar.2025.025Palabras clave:
Industria 4.0, industria alimentaria, automatización, inteligencia artificialResumen
Este artículo de revisión examina las aplicaciones actuales de la automatización en la industria alimentaria y su vínculo con el paradigma de la Industria 4.0, analizando las principales tendencias, beneficios y desafíos asociados con la adopción de tecnologías emergentes. Se realizó una revisión sistemática de la literatura utilizando la base de datos Scopus, aplicando el enfoque PICOC y el protocolo PRISMA, lo que permitió seleccionar 120 estudios relevantes. El análisis bibliométrico, efectuado con VOSviewer y Bibliometrix, respaldó la búsqueda y facilitó la identificación de temáticas consolidadas. Los hallazgos evidencian que la Industria 4.0 ofrece múltiples oportunidades para mejorar la eficiencia, trazabilidad y capacidad de respuesta del sector alimentario, mediante la incorporación de inteligencia artificial, aprendizaje automático, aprendizaje profundo y blockchain. No obstante, su implementación enfrenta barreras como la escasez de personal calificado y la resistencia al cambio organizacional. Se sugiere que futuras investigaciones analicen el impacto de estas transformaciones en el desarrollo de competencias laborales, así como en el diseño de estrategias que permitan superar los desafíos identificados. Además, resulta crucial evaluar cómo estas tecnologías pueden contribuir a una producción más sostenible, optimizando el uso de recursos y reduciendo el impacto ambiental, en concordancia con los Objetivos de Desarrollo Sostenible.
Descargas
Referencias
Alqudhaibi, A., Albarrak, M., Jagtap, S., Williams, N., & Salonitis, K. (2025). Securing industry 4.0: Assessing cybersecurity challenges and proposing strategies for manufacturing management. Cyber Security and Applications,3,100067. https://doi.org/10.1016/j.csa.2024.100067
Ahamed, N. N., & Vignesh, R. (2022). Smart agriculture and food industry with blockchain and artificial intelligence. Journal of Computer Science, 18(1), 1-17. https://doi.org/10.3844/jcssp.2022.1.17
Qazi, A. M., Mahmood, S. H., Haleem, A., Bahl, S., Javaid, M., & Gopal, K. (2022). The impact of smart materials, digital twins (DTs) and Internet of things (IoT) in an industry 4.0 integrated automation industry. Materials Today: Proceedings, 62, 18-25. https://doi.org/10.1016/j.matpr.2022.01.387
Akyazi, T., Goti, A., Oyarbide, A., Alberdi, & E., Bayon, F. (2020). A Guide for the Food Industry to Meet the Future Skills Requirements Emerging with Industry4.0.Foods,9(4),492. https://doi.org/10.3390/foods9040492
Alsaedi, A.W.M., Al-Hilphy, A.R., Al-Mousawi, A.J., & Gavahian, M. (2024). Artificial intelligence-based modeling of novel non-thermal milk pasteurization to achieve desirable color and predict quality parameters during storage. Journal of Food Process Engineering, 47(7), e14658. https://doi.org/10.1111/JFPE.14658
Ananias, E., Gaspar, P. D., Soares, V. N., & Caldeira, J. M. (2021). Artificial intelligence decision support system based on artificial neural networks to predict the commercialization time by the evolution of peach quality. Electronics, 10(19), 2394. https://doi.org/10.3390/electronics10192394
Arshad, S., Kazmi, H., Javed, M., & Mohammed, S. (2023). Applicability of machine learning techniques in predicting wheat yield based on remote sensing and climate data in Pakistan, South Asia. European Journal of Agronomy, 1161-0301. https://doi.org/10.1016/j.eja.2023.126837
Attaran, M. (2023). The impact of 5G on the evolution of intelligent automation and industry digitization. Journal of Ambient Intelligence and Humanized Computing, 14, 5977–5993. https://doi.org/10.1007/s12652-020-02521-x
Bader, F., & Rahimifard, S. (2020). A methodology for the selection of industrial robots in food handling. Innovative Food Science & Emerging Technologies, 64,102379. https://doi.org/10.1016/j.ifset.2020.102379
Bali, K.C., Kaya Yıldırım, F., & Ulusoy, B.H. (2024). Artificial intelligence-based model for evaluating the inhibition of Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli in kefir matrix. Quality Assurance and Safety of Crops & Foods, 16(4), 80–98. https://doi.org/10.15586/QAS.V16I4.1459
Banús, N., Boada, I., Xiberta, P., Toldrà, P., & Bustins, N. (2021). Deep learning for the quality control of thermoforming food packages. Scientific Reports, 11(1), 21887. https://doi.org/10.1038/s41598-021-01254-x
Barbut, S. (2020). Meat Industry 4.0: A Distant Future?. Animal Frontiers, 10(4), 38–47. https://doi.org/10.1093/af/vfaa038
Barge, P., Biglia, A., Comba, L., Ricauda Aimonino, D., Tortia, C., & Gay, P. (2020). Radio Frequency IDentification for Meat Supply-Chain Digitalisation. Sensors, 20(17), 4957. https://doi.org/10.3390/s20174957
Bhat, W., Manzoor, A., Ahmad, Z., & Qureshi, D. (2023). How to Conduct Bibliometric Analysis Using R-Studio: A Practical Guide. European Economics Letters, 13, 681–700. https://doi.org/10.52783/eel.v13i3.350
Bhatia, S., & Albarrak, A.S. (2023). A Blockchain-Driven Food Supply Chain Management Using QR Code and XAI-Faster RCNN Architecture. Sustainability, 15(3), 2579. https://doi.org/10.3390/su15032579
Borras, E., Wang, Y., Shah, P., Bellido, K., Hamera, K. L., Arlen, R. A., ... & Turpen, T. H. (2023). Active sampling of volatile chemicals for non-invasive classification of chicken eggs by sex early in incubation. Plos one, 18(5), e0285726. https://doi.org/10.1371/journal.pone.0285726
Bui, T.D., Tseng, J.W., Tran, T.P.T., Ha, H.M., Lim, M.K., & Tseng, M.L. (2023). Circular supply chain strategy in Industry 4.0: The canned food industry in Vietnam. Business Strategy and the Environment, 32(8), 6047–6073. https://doi.org/10.1002/BSE.3472
Burgdorf, S., Roddelkopf, T., & Thurow, K. (2024). Automated Crystallization Monitoring in Material Development using Computer Vision and Neuronal Networks. Chemie Ingenieur Technik, 96(3). https://doi.org/10.1002/cite.202300049
Casablanca, P.M., & Arroyo-Barrigüete, J.L. (2023). Productividad en la Industria 4.0. Evidencias empíricas en el sector de embotellado. Revista de Ingeniería de Organización, 79. https://doi.org/10.37610/dyo.v0i79.636
Chard, L. (2021). Lab Techniques for a More Sustainable World. BioTechniques, 71(4), 501–504. https://doi.org/10.2144/btn-2021-0081
Chen, T.-C., & Yu, S.-Y. (2022). The review of food safety inspection system based on artificial intelligence, image processing, and robotic. Food Science and Technology, 42, e35421. https://doi.org/10.1590/fst.35421
Chiras, D., Stamatopoulou, M., Paraskevis, N., Moustakidis, S., Tzimitra-Kalogianni, I., & Kokkotis, C. (2023). Explainable Machine Learning Models for Identification of Food-Related Lifestyle Factors in Chicken Meat Consumption Case in Northern Greece. BioMedInformatics, 3(3), 817–828. https://doi.org/10.3390/biomedinformatics3030051
D’Amore, G., Di Vaio, A., Balsalobre-Lorente, D., & Boccia, F. (2022). Artificial intelligence in the water–energy–food model: a holistic approach towards sustainable development goals. Sustainability, 14(2), 867. https://doi.org/10.3390/su14020867
Dadi, V., Nikhil, S. R., Mor, R., Agarwal, T., & Arora, S. (2021). Agri-food 4.0 and innovations: Revamping the supply chain operations. Production Engineering Archives, 27(2), 75-89. https://doi.org/10.30657/pea.2021.27.10
Dawid, H., & Neugart, M. (2023). Effects of technological change and automation on industry structure and (wage-) inequality: insights from a dynamic task-based model. Journal of Evolutionary Economics, 33(1), 35-63. https://doi.org/10.1007/s00191-022-00803-5
De Pilli, T. (2022). Application of fuzzy logic system for the pizza production processing optimisation. Journal of Food Engineering, 319, 110906. https://doi.org/10.1016/J.JFOODENG.2021.110906
Konur, S., Lan, Y., Thakker, D., Morkyani, G., Polovina, N., & Sharp, J. (2023). Towards design and implementation of Industry 4.0 for food manufacturing. Neural Computing and Applications, 35, 23753–23765. https://doi.org/10.1007/s00521-021-05726-z
Decardi-Nelson, B., & You, F. (2024). Artificial intelligence can regulate light and climate systems to reduce energy use in plant factories and support sustainable food production. Nature Food, 5(10), 869–881. https://doi.org/10.1038/S43016-024-01045-3
Di Vaio, A., Boccia, F., Landriani, L., & Palladino, R. (2020). Artificial Intelligence in the Agri-Food System: Rethinking Sustainable Business Models in the COVID-19 Scenario. Sustainability, 12(12), 4851. https://doi.org/10.3390/su12124851
Duan, J.L., Lai, L.Q., Yang, Z., Luo, Z.J., & Yuan, H.T. (2024). Multi-feature language-image model for fruit quality image classification. Computers and Electronics in Agriculture, 227, 109462. https://doi.org/10.1016/J.COMPAG.2024.109462
Einarsdóttir, H., Guðmundsson, B., & Ómarsson, V. (2022). Automation in the fish industry. Animal Frontiers, 12(2), 32-39. https://doi.org/10.1093/af/vfac020
Farah Bader., & Shahin Rahimifard (2020). A methodology for the selection of industrial robots in food handling. Innovative Food Science & Emerging Technologies, 64, 102379. https://doi.org/10.1016/j.ifset.2020.102379
Friege, H., & Eger, Y. (2022). Best practice for bio-waste collection as a prerequisite for high-quality compost. Waste Management & Research, 40(1), 104-110. https://doi.org/10.1177/0734242X211033714
Fries, M., & Ludwig, T. (2024). ‘why are the sales forecasts so low?’socio-technical challenges of using machine learning for forecasting sales in a bakery. Computer Supported Cooperative Work (CSCW), 33(2), 253-293. https://doi.org/10.1007/s10606-022-09458-z
Ghanghas, S., Kumar, N., Singh, V. K., Kumar, S., Birania, S., & Kumar, A. (2024). Image processing technology, imaging techniques, and their application in the food processing sector. Nonthermal Food Engineering Operations, 193-223. https://doi.org/10.1002/9781119776468.ch6
van der Burg, S., Giesbers, E., Bogaardt, M. J., Ouweltjes, W., & Lokhorst, K. (2024). Ethical aspects of AI robots for agri-food; a relational approach based on four case studies. AI & SOCIETY, 39(2), 541-555. https://doi.org/10.1007/s00146-022-01429-8
Goyache, F., Bahamonde, A., Alonso, J., López, S., Del Coz, J. J., Quevedo, J. R., ... & Díez, J. (2001). The usefulness of artificial intelligence techniques to assess subjective quality of products in the food industry. Trends in Food Science & Technology, 12(10), 370-381. https://doi.org/10.1016/S0924-2244(02)00010-9
Grenier, P., Alvarez, I., Roger, J.M., Steinmetz, V., Barre, P., & Sablayrolles, J.M. (2000). Artificial intelligence in wine-making. OENO One, 34(2), 61–68. https://doi.org/10.20870/OENO-ONE.2000.34.2.1007
Gružauskas, V., & Burinskienė, A. (2022). Managing Supply Chain Complexity and Sustainability: The Case of the Food Industry. Processes, 10(5), 852. https://doi.org/10.3390/pr10050852
Hamill, R.M., Ferragina, A., Mishra, J.P., Kavanagh, A., Hibbett, M., Gagaoua, M., Colreavy, J., & Rady, A. (2024). Toward Meat Industry 4.0: opportunities and challenges for digitalized red meat processing. Food Industry 4.0, 259–281. https://doi.org/10.1016/B978-0-443-15516-1.00013-X
Hassoun, A., Jagtap, S., Trollman, H., Garcia-Garcia, G., Abdullah, N. A., Goksen, G., ... & Lorenzo, J. M. (2023). Food processing 4.0: Current and future developments spurred by the fourth industrial revolution. Food Control, 145, 109507. https://doi.org/10.1016/j.foodcont.2022.109507
Heinzova, R., Strohmandl, J., & Janova, N. (2024). Production and logistics 4.0 in the food industry in the Czech Republic. International Scientific Journal about Logistica, 11, 421–427. https://doi.org/10.22306/al.v11i3.527
Heuson, E., Etchegaray, A., Filipe, S. L., Beretta, D., Chevalier, M., Phalip, V., & Coutte, F. (2019). Screening of lipopeptide‐producing strains of Bacillus sp. using a new automated and sensitive fluorescence detection method. Biotechnology Journal, 14(4), 1800314. https://doi.org/10.1002/biot.2018003
Einarsdóttir, H., Guðmundsson, B., & Ómarsson, V. (2022). Automation in the fish industry. Animal Frontiers, 12(2), 32-39. https://doi.org/10.1093/af/vfac020
Hobbs, J.E. (2021). The Covid-19 pandemic and meat supply chains. Meat Science, 181, 108459. https://doi.org/10.1016/j.meatsci.2021.108459
Holzinger, I., Fister, I., Fister, H.-P., Kaul, H.P., & Asseng, S. (2024). Human-Centered AI in Smart Farming: Toward Agriculture 5.0. IEEE Access, 12, 62199- 62214. https://doi.org/10.1109/ACCESS.2024.3395532
Hsieh, S.-J., & Hykin, J. (2024). Multi-Stage Corn-to-Syrup Process Monitoring and Yield Prediction Using Machine Learning and Statistical Methods. Sensors, 24(19), 6401. https://doi.org/10.3390/S24196401
Ibn-Mohammed, T., Mustapha, K. B., Godsell, J., Adamu, Z., Babatunde, K. A., Akintade, D. D., ... & Koh, S. C. L. (2021). A critical analysis of the impacts of COVID-19 on the global economy and ecosystems and opportunities for circular economy strategies. Resources, Conservation and Recycling, 164, 105169. https://doi.org/10.1016/j.resconrec.2020.105169
Ilyukhin, S.V., Haley, T.A., & Singh, R.K. (2001). A survey of automation practices in the food industry. Food Control, 12(5), 285–296. https://doi.org/10.1016/S0956-7135(01)00015-9
Jha, R., Lang, W., & Jedermann, R. (2023). Ultrasonic measurement setup for monitoring pre-thawing stages of food. Journal of Sensors and Sensor Systems, 12, 133–139. https://doi.org/10.5194/jsss-12-133-2023
Jossa-Bastidas, O., Sanchez, A. O., Bravo-Lamas, L., & Garcia-Zapirain, B. (2023). Iot system for gluten prediction in flour samples using NIRS technology, deep and machine learning techniques. Electronics, 12(8),1916. https://doi.org/10.3390/electronics12081916
Jung, D. H., Kim, N. Y., Moon, S. H., Jhin, C., Kim, H. J., Yang, J. S., ... & Park, S. H. (2021). Deep learning-based cattle vocal classification model and real-time livestock monitoring system with noise filtering. Animals, 11(2), 357. https://doi.org/10.3390/ani11020357
Saraji, M. K., Aliasgari, E., & Streimikiene, D. (2023). Assessment of the challenges to renewable energy technologies adoption in rural areas: A Fermatean CRITIC-VIKOR approach. Technological Forecasting and Social Change, 189, 122399. https://doi.org/10.1016/j.techfore.2023.122399
Katiyar, S., Khan, R., & Kumar, S. (2021). Artificial bee colony algorithm for fresh food distribution without quality loss by delivery route optimization. Journal of Food Quality, 2021(1), 4881289. https://doi.org/10.1155/2021/4881289
Koulouris, A., Misailidis, N., & Petrides, D. (2021). Applications of process and digital twin models for production simulation and scheduling in the manufacturing of food ingredients and products. Food and Bioproducts Processing, 126, 317–333. https://doi.org/10.1016/j.fbp.2021.01.016
Krishna, S., Kumar, R., Rose, J., Patidar, V. Soni, A., Mehta, D., & Ranadive, A. (2023). Artificial intelligence and big data analytics-based optimization of crop yields in sustainable agriculture. Carpathian Journal of Food Science and Technology, Special Issue, 1–15. https://doi.org/10.34302/SI/238
Kumar, I., Rawat, J., Mohd, N., & Husain, S. (2021). Opportunities of artificial intelligence and machine learning in the food industry. Journal of Food Quality, 2021(1), 4535567. https://doi.org/10.1155/2021/4535567
Lee, J., Kim, Y., & Kim, S. (2023). The study of an adaptive bread maker using machine learning. Foods, 12(22), 4160. https://doi.org/10.3390/foods12224160
Li, X., & Sharma, A. (2024). Development of NC Program Simulation Software Based on AutoCAD Swarm Optimization Algorithm. Computer-Aided Design and Applications, 21(S6), 30–40. https://doi.org/10.14733/cadaps.2024.S6.30-40
Lievano-Martínez, F. A., Fernández-Ledesma, J. D., Burgos, D., Branch-Bedoya, J. W., & Jimenez-Builes, J. A. (2022). Intelligent process automation: An application in manufacturing industry. Sustainability, 14(14), 8804. https://doi.org/10.3390/su14148804
Lin, C.J., & Prasetyo, R. (2025). Learning performance and physiological feedback-based evaluation for human–robot collaboration. Applied Ergonomics, 124, 104425. https://doi.org/10.1016/j.apergo.2024.104425
Luiz, L.da C., Nascimento, C.A., Bell, M.J.V., Batista, R.T., Meruva, S., & Anjos, V. (2022). Use of mid infrared spectroscopy to analyze the ripening of Brazilian bananas. Food Science and Technology, 42, e74221. https://doi.org/10.1590/fst.74221
Lutoslawski, K., Hernes, M., Radomska, J., Hajdas, M., Walaszczyk, E., & Kozina, A. (2021). Food demand prediction using the nonlinear autoregressive exogenous neural network. IEEE Access, 9, 146123-146136.https://doi.org/10.1109/ACCESS.2021.3123255
Madhavan, M., Sharafuddin, M. A., & Wangtueai, S. (2024). Impact of Industry 5.0 Readiness on Sustainable Business Growth of Marine Food Processing SMEs in Thailand. Administrative Sciences, 14(6), 110.https://doi.org/10.3390/admsci14060110
Makridis, G., Mavrepis, P., & Kyriazis, D. (2023). A deep learning approach using natural language processing and time-series forecasting towards enhanced food safety. Machine Learning, 112, 1287–1313. https://doi.org/10.1007/s10994-022-06151-6
Mansourvar, M., Funk, J., Petersen, S. D., Tavakoli, S., Hoof, J. B., Corcoles, D. L., ... & Frandsen, R. J. N. (2024). Automatic classification of fungal-fungal interactions using deep leaning models. Computational and Structural Biotechnology Journal, 23, 4222-4231.https://doi.org/10.1016/J.CSBJ.2024.11.027
Markovic, M., Li, A., Ayall, T. A., Watson, N. J., Bowler, A. L., Woods, M., ... & Leontidis, G. (2024). Embedding AI-Enabled Data Infrastructures for Sustainability in Agri-Food: Soft-Fruit and Brewery Use Case Perspectives. Sensors, 24(22), 7327.https://doi.org/10.3390/S24227327
McCarney, E. R., Dykstra, R., Dykstra, C. G., & FitzPatrick, A. (2023). Automated Eating Quality Measurements on Lamb Carcases in a Processing Plant Using Unilateral NMR. Applied Magnetic Resonance, 54(11), 1377-1389. https://doi.org/10.1007/s00723-023-01615-x
Wang, M., & Li, X. (2024). Application of artificial intelligence techniques in meat processing: A review. Journal of Food Process Engineering, 47(3), e14590. https://doi.org/10.1111/jfpe.14590
Mokhtar, A., He, H., Nabil, M., Kouadri, S., Salem, A., & Elbeltagi, A. (2024). Securing China’s rice harvest: Unveiling dominant factors in production using multi-source data and hybrid machine learning models. Scientific Reports, 14(1), 14699. https://doi.org/10.1038/s41598-024-64269-0
Neo, Y.T., Chia, W.Y., Lim, S.S., Ngan, C.L., Kurniawan, T.A., & Chew, K.W. (2023). Smart systems in producing algae-based protein to improve functional food ingredients industries. Food Research International, 165, 112480. https://doi.org/10.1016/j.foodres.2023.112480
Neri, I., Caponi, S., Bonacci, F., Clementi, G., Cottone, F., Gammaitoni, L., ... & Mattarelli, M. (2024). Real-Time AI-Assisted Push-Broom Hyperspectral System for Precision Agriculture. Sensors, 24(2), 344. https://doi.org/10.3390/S24020344
Nobel, S. N., Wadud, M. A. H., Rahman, A., Kundu, D., Aishi, A. A., Sazzad, S., ... & Bhuiyan, T. A. U. H. (2024). Categorization of dehydrated food through hybrid deep transfer learning techniques. Statistics, Optimization & Information Computing, 12(4), 1004-1018. https://doi.org/10.19139/soic-2310-5070-1896
Nolasco-Mamani, M. A., Vidaurre, S. M. E., & Choque-Salcedo, R. E. (2022). Innovación y Transformación Digital en la Empresa. ACVENISPROH Académico. https://doi.org/10.47606/ACVEN/ACLIB0039
Anam, K., & Al-Jumaily, A. (2020). Performance evaluation of SRELM on bio-signal pattern recognition using two electromyography channels. International Journal on Advanced Science, Engineering and Information Technology, 10(5), 1963–1969. https://doi.org/10.18517/ijaseit.10.5.9261
Suchacka, M., Pabian, A. M., & Ulewicz, R. (2023). Industry 4.0 and socio-economic evolution. Polish Journal of Management Studies, 28. https://doi.org/10.17512/pjms.2023.28.1.18
Park, J. Y., Park, K., Ok, G., Chang, H. J., Park, T. J., Choi, S. W., & Lim, M. C. (2020). Detection of Escherichia coli O157: H7 using automated immunomagnetic separation and enzyme-based colorimetric assay. Sensors, 20(5), 1395. https://doi.org/10.3390/s20051395
Ponce, J. M., Aquino, A., & Andujar, J. M. (2019). Olive-fruit variety classification by means of image processing and convolutional neural networks. IEEE Access, 7, 147629-147641. https://doi.org/10.1109/ACCESS.2019.2947160
Raamets, T., Majak, J., Karjust, K., Mahmood, K., & Hermaste, A. (2024). Autonomous mobile robots for production logistics: a process optimization model modification. Proceedings of the Estonian Academy of Sciences,73(2). https://doi.org/10.3176/proc.2024.2.06
Ramachandran, R. P., Nadimi, M., Cenkowski, S., & Paliwal, J. (2024). Advancement and Innovations in Drying of Biopharmaceuticals, Nutraceuticals, and Functional Foods. Food Engineering Reviews, 1-27. https://doi.org/10.1007/s12393-024-09381-7
Ramalingam, B., Mohan, R. E., Pookkuttath, S., Gómez, B. F., Sairam Borusu, C. S. C., Wee Teng, T., & Tamilselvam, Y. K. (2020). Remote Insects Trap Monitoring System Using Deep Learning Framework and IoT. Sensors, 20(18), 5280. https://doi.org/10.3390/s20185280
Ramirez-Asis, E., Vilchez-Carcamo, J., Thakar, C.M., Phasinam, K., Kassanuk, T., & Naved, M. (2022). A review on role of artificial intelligence in food processing and manufacturing industry. Materials Today: Proceedings, 51(8), 2462–2465. https://doi.org/10.1016/j.matpr.2021.11.616
Rapado-Rincón, D., Nap, H., Smolenova, K., Van-Henten, E., & Koostra, G. (2023). MOT-DETR: 3D single-shot detection and tracking with transformers to create 3D renderings for agri-food robots. Computers and Electronics in Agriculture, 225,109275. https://doi.org/10.48550/arXiv.2311.15674
Rashvand, M., Altieri, G., Abbaszadeh, R., Matera, A., Genovese, F., Feyissa, A. H., & Di Renzo, G. C. (2023). Prediction of CO2 and ethylene produced in‐packaged apricot under cold plasma treatment by machine learning approach. Journal of Food Process Engineering, 46(9), e14418. https://doi.org/10.1111/jfpe.14418
Redchuk, A., Walas Mateo, F., Pascal, G., Tornillo, J.E. (2023). Adoption Case of IIoT and Machine Learning to Improve Energy Consumption at a Process Manufacturing Firm, under Industry 5.0 Model. Big Data and Cognitive Computing, 7(1), 42. https://doi.org/10.3390/bdcc7010042
Rokhva, S., Teimourpour, B., & Soltani, A.H. (2024). Computer vision in the food industry: Accurate, real-time, and automatic food recognition with pretrained MobileNetV2. Food and Humanity, 3,100378. https://doi.org/10.1016/J.FOOHUM.2024.100378
Sawangwong, A., & Chaopaisarn, P. (2023). The impact of applying knowledge in the technological pillars of Industry 4.0 on supply chain performance. Kybernetes, 52(3), 1094–1126. https://doi.org/10.1108/K-07-2021-0555
Seaton, M. (2022). Lessons in automation of meat processing. Animal Frontiers, 12(2), 25–31. https://doi.org/10.1093/af/vfac022
Seifi, M. R., Alimardani, R., Mohtasebi, S. S., Mobli, H., & Firouz, M. S. (2023). A Supervisory Control System for Automation of Horizontal Form-Fill-Seal Packaging Plant Based on Modified Atmosphere Technology. Acta Mechanica et Automatica, 17(3), 423–434. https://doi.org/10.2478/ama-2023-0049
Shimizu, R., & Momoda, S. (2023). Does automation technology increase wage. Journal of Macroeconomics, 77, 103541. https://doi.org/10.1016/j.jmacro.2023.103541
Sindermann, D., Heidhues, J., Kirchner, S., Stadermann, N., & Kühl, A. (2021). Industrial processing technologies for insect larvae. Journal of Insects as Food and Feed, 7(5), 857–876. https://doi.org/10.3920/JIFF2020.0103
Squara, S., Caratti, A., Fina, A., Liberto, E., Koljančić, N., Špánik, I., ... & Cordero, C. (2024). Artificial intelligence decision making tools in food metabolomics: Data fusion unravels synergies within the hazelnut (Corylus avellana L.) metabolome and improves quality prediction. Food Research International, 194, 114873. https://doi.org/10.1016/J.FOODRES.2024.114873
Starynina, J., & Ustinovichius, L. (2020). A multi-criteria decision-making synthesis method to determine the most effective option for modernising a public building. Technological and Economic Development of Economy, 26(6), 1237–1262. https://doi.org/10.3846/tede.2020.13398
Takács, K., Takács, B., Garamvölgyi, T., Tarsoly, S., Alexy, M., Móga, K., Rudas, I.J., Galambos, P., & Haidegger, T. (2024). Sensor-Enhanced Smart Gripper Development for Automated Meat Processing. Sensors, 24(14), 4631. https://doi.org/10.3390/s24144631
Tell, F., López, J.M., Sanchéz, I.Y., Paredes, C.A., & Pisano, E. (2023). Evaluation of the degree of automation and digitalization using a diagnostic and analysis tool for a methodological implementation of Industry 4.0. Computers & Industrial Engineering, 177,109097. https://doi.org/10.1016/j.cie.2023.109097
Tleuvelessova, D., Medvedkov, Y., Kairbayeva, A., & Nazymbekova, A. (2023). Mechanisation of the primary processing of watermelons without destroying the rind. Food Science and Technology, 43, e86622. https://doi.org/10.1590/fst.86622
Tran, M., Troung, S., Fernandez, A., Kidd, M., & Le, N. (2024). CarcassFormer: an end-to-end transformer-based framework for simultaneous localization, segmentation and classification of poultry carcass defect. Poultry Science, 103(8), 103765. https://doi.org/10.1016/j.psj.2024.103765
Vargas, M., Mosquera, R., Fuertes, G., Alfaro, M., & Perez-Varga, G. (2024). Process optimisation in a condiment SME through Lean Six Sigma improvement with a neural network of surface tension. Processes, 12(9), 2001. https://doi.org/10.3390/pr12092001
Verma, P.K., Pathak, P., Kumar, B., Himani, H., & Preety, P. (2023). Automatic Optical Imaging System for Mango Fruit using Hyperspectral Camera and Deep Learning Algorithm. International Journal on Recent and Innovation Trends in Computing and Communication, 11(5s), 112–117. https://doi.org/10.17762/ijritcc.v11i5s.6635
Voipio, C., Vilko, J., Calvo, E., & Korpela, J. (2023). The future of work: skills and knowledge perspective on service automation in the foodservice industry. Technology Analysis & Strategic Management, 36(10), 2846–2860. https://doi.org/10.1080/09537325.2023.2165440
Vrchota, J., Vlčková, M., & Frantíková, Z. (2020). Division of Enterprises and Their Strategies in Relation to Industry 4.0. Central European Business Review, 9(4), 27–44. https://doi.org/10.18267/j.cebr.243
Vujičić, S., Hasanspahić, N., Car, M., & Čampara, L. (2020). Distributed Ledger Technology as a Tool for Environmental Sustainability in the Shipping Industry. Journal of Marine Science and Engineering, 8(5), 366. https://doi.org/10.3390/jmse8050366
Wang, Z., Makiyama, Y., & Hirai, S. (2021). A Soft Needle Gripper Capable of Grasping and Piercing for Handling Food Materials. Journal of Robotics and Mechatronics, 33(4), 935–943. https://doi.org/10.20965/jrm.2021.p0935
Wright, R., Parekh, S., & White, R. (2024). Safely and autonomously cutting meat with a collaborative robot arm. Scientific Reports, 14, 299. https://doi.org/10.1038/s41598-023-50569-4
Xu, W., He, Y., Li, J., Zhou, J., Xu, E., Wang, W., & Liu, D. (2023). Robotization and intelligent digital systems in the meat cutting industry: From the perspectives of robotic cutting, perception, and digital development. Trends in Food Science & Technology, 135, 234–251. https://doi.org/10.1016/j.tifs.2023.03.018
Zarikhani, Z., Mostafaee, K., & Azar, A. (2024). Route mapping of artificial intelligence technologies for the food industry: a TDE approach. Journal of Industrial and Production Management, 39, 299–326. https://doi.org/10.22034/jipm.2024.711533
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Gina Jahaira Damián Moran, Jhasmin Mayhua Ayuque, Judith Erika Inga Quinto, Crhistian Omar Larrea Cerna, David Callirgos Romero

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license