Bacteria producing L-asparaginase isolated from Peruvian saline environments

Authors

DOI:

https://doi.org/10.17268/manglar.2021.026

Abstract

L-asparaginase (EC 3.5.1.1) hydrolyzes L-asparagine in L-aspartic acid and ammonia. Its efficiency is subject to its kinetics and specificity on the substrate, characteristics that vary from one source to another. Thus, microorganisms from saline environments constitute a phylogenetic and metabolically heterogeneous group for the search of new enzymes. Therefore, the objective of this study was the phenotypic and genotypic characterization of bacteria with L-asparaginase activity isolated from Maras, Pilluana and Chilca salterns. The 24 evaluated bacteria were classified as 38% Gram-negative bacilli and 54% positive; and 8% Gram-positive cocci. The majority grew in 5% salt water, pH 7.0 and 37 °C, all assimilated glucose. Of the 24 bacteria that produced L-asparaginase in solid medium, enzymatic activity was determined in submerged cultures by the Nessler method in 14 of them. The CH11, M62, M64, M68, and P19 strains identified as Bacillus sp., by partial sequencing of the 16S ribosomal gene, presented higher L-asparaginase activity and instability due to the presence of proteases. Saline environments bacteria are potential sources for the prospective production of L-asparaginase to use them as a therapeutic agent and in the food industry.

Downloads

Download data is not yet available.

References

Barati, M., Faramarzi, M. A., Nafissi-Varcheh, N., Khoshayand, M. R., Tehrani, M. H. H., Vahidi, H., & Adrangi, S. 2016. L-asparaginase activity in cell lysates and culture media of halophilic bacterial isolates. Iranian Journal of Pharmaceutical Research, 15(3), 435-440.

Batool, T., Makky, E. A., Jalal, M., & Yusoff, M. M. 2016. A comprehensive review on L-asparaginase and its applications. Applied Biochemistry and Biotechnology, 178(5), 900-923.

Bell, E. (Ed). 2012. Life at Extremes: Environments, Organisms and Strategies for Survival (Vol. 1). Wallingford: CABI.

Bhunia, B., Basak, B., & Dey, A. 2012. A review on production of serine alkaline protease by Bacillus spp. Journal of Biochemical Technology, 3(4), 448-457.

Canales, P. E., Chávez-Hidalgo, E. L., & Zavaleta, A. I. 2014. Caracterización de bacterias halófilas productoras de amilasas aisladas de las Salinas de San Blas en Junín. Revista Colombiana de Biotecnología, 16(2), 150-157.

Coêlho, D. F., Saturnino, T. P., Fernandes, F. F., Mazzola, P. G., Silveira, E., & Tambourgi, E. B. 2016. Azocasein substrate for determination of proteolytic activity: reexamining a traditional method using bromelain samples. BioMed Research International, 2016, 1-6.

Corral, P., Amoozegar, M. A., & Ventosa, A. 2019. Halophiles and their biomolecules: recent advances and future applications in biomedicine. Mar Drugs, 18(1), 1-33.

Chacón, G. 1980. Acción bactericida de la laguna minero-medicinal "Santa Cruz de las Salinas" Chilca, Lima-Perú. Revista Peruana de Biología, 2(1), 8-51.

Chávez-Hidalgo, E. L. 2010. Bacterias halófilas moderadas con actividad lipolítica aisladas de las Salinas de Pilluana- San Martín. Thesis of Master. Universidad Nacional Mayor de San Marcos, Lima, Peru.

De Wit, R., & Bouvier, T. 2006. ‘Everything is everywhere, but, the environment selects’, what did Baas Becking and Beijerinck really say? Environmental Microbiology, 8(4), 755-758.

Delgado-García, M., Valdivia-Urdiales, B., Aguilar-González, C. N., Contreras-Esquivel, J. C., & Rodríguez-Herrera, R. 2012. Halophilic hydrolases as a new tool for the biotechnological industries. Journal of the Science of Food and Agriculture, 92(13), 2575-2580.

Dyall-Smith, M. 2006. The halohandbook. Melbourne: University of Melbourne.

Ebrahiminezhad, A., RasouL-Amini, S., & Ghasemi, Y. 2011. L-asparaginase production by moderate halophilic bacteria isolated from Maharloo Salt Lake. Indian Journal of Microbiology, 51(3), 307-311.

Enache, M., & Kamekura, M. 2010. Hydrolitic enzymes of halophilic microorganisms and their economic values. Romanian Journal of Biochemistry, 47(1): 47-59.

Flores-Fernandez, C. N., Chávez-Hidalgo, E., Santos, M., Zavaleta, A.I., & Arahal, D.R. 2019. Molecular characterization of protease producing Idiomarina species isolated from Peruvian saline environments. Microbiology and Biotechnology Letters, 47(3), 401-411.

Ghasemi, A., Asad, S., Kabiri, M., & Dabirmanesh, B. 2017. Cloning and characterization of Halomonas elongata L-asparaginase, a promising chemotherapeutic agent. Applied Microbiology and Biotechnology, 101(19), 7227-7238.

Gomes, J., & Steiner, W. 2004. The biocatalytic potential of extremophiles and extremozymes. Food Technology and Biotechnology, 42(4), 223-235.

Gulati, R., Saxena, R., & Gupta, R. 1997. A rapid plate assay for screening L-asparaginase producing microorganisms. Letters in Applied Microbiology, 24(1), 23-26.

Han, S., Jung, J., & Park, W. 2014. Biochemical characterization of L-asparaginase in NaCl-tolerant Staphylococcus sp. OJ82 isolated from fermented seafood. Journal of Microbiology and Biotechnology, 24(8), 1096-1104.

Harwood, C. R., Mouillon, J. M., Pohl, S., & Arnau, J. 2018. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiology Reviews, 42(6), 721-738.

Imada, A., Igarasi, S., Nakahama, K., & Isono, M. 1973. Asparaginase and glutaminase activities of microorganisms. Journal of General Microbiology, 76(1), 85-99.

Mahajan, R. V., Saran, S., Saxena, R. K., & Srivastava, A. K. 2013. A rapid, efficient and sensitive plate assay for detection and screening of L-asparaginase-producing microorganisms. FEMS Microbiology Letters, 341(2), 122-126.

Mata, J. A., Martínez-Cánovas, J., Quesada, E., & Béjar, V. 2002. A detailed phenotypic characterisation of the type strains of Halomonas species. Systematic and Applied Microbiology, 25(3), 360-375.

Maturrano, L., Santos, F., Rossello-Mora, R., & Anton, J. 2006. Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Applied and Environmental Microbiology, 72(6), 3887-3895.

Miao, C., Jia, F., Wan, Y., Zhang, W., Lin, M., & Jin, W. 2014. Halomonas huangheensis sp. nov., a moderately halophilic bacterium isolated from a saline–alkali soil. International Journal of Systematic and Evolutionary Microbiology, 64(3), 915-920.

Muneer, F., Siddique, M. H., Azeem, F., Rasul, I., Muzammil, S., Zubair, M., Afzal, M., & Nadeem, H. 2020. Microbial L-asparaginase: purification, characterization and applications. Archives of Microbiology, 202(5), 967-981.

Oren, A. 2010. Industrial and environmental applications of halophilic microorganisms. Environmental Technology, 31(8-9), 825-834.

Ortiz, A., & Sansinenea, E. 2019. Chemical compounds produced by Bacillus sp. factories and their role in nature. Mini Reviews in Medicinal Chemistry, 19(5), 373-380.

Qeshmi, F.I., Rahimzadeh, M., Javadpour, S., & Poodat, M. 2015. Intracellular L-Asparaginase from Bacillus sp. PG02: purification, biochemical characterization and evaluation of optimum pH and temperature. American Journal of Biochemistry and Biotechnology, 12(1), 12-19.

Ruginescu, R., Purcarea, C., Dorador, C., Lavin, P., Cojoc, R., Neagu, S., Lucaci, I., & Enache, M. 2019. Exploring the hydrolytic potential of cultured halophilic bacteria isolated from the Atacama Desert. FEMS Microbiology Letters, 366(17), fnz224.

Sánchez‐Porro, C., Martin, S., Mellado, E., & Ventosa, A. 2003. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. Journal of Applied Microbiology, 94(2), 295-300.

Shirazian, P., Asad, S., & Amoozegar, M. A. 2016. The potential of halophilic and halotolerant bacteria for the production of antineoplastic enzymes: L-asparaginase and L-glutaminase. EXCLI Journal, 15, 268-279.

Published

2021-06-22

Issue

Section

ARTÍCULO ORIGINAL

How to Cite

Bacteria producing L-asparaginase isolated from Peruvian saline environments. (2021). Manglar, 18(2), 193-199. https://doi.org/10.17268/manglar.2021.026