Degradation of polystyrene by insects and associated microorganisms: bibliometric analysis and a narrative review of techniques used in characterization

Authors

DOI:

https://doi.org/10.57188/manglar.2024.039

Abstract

Polystyrene, known for its resistance to biodegradation, constitutes a significant source of environmental pollution. However, certain insects and associated microorganisms have been found to degrade it, using this material as a source of carbon and energy. Therefore, the objective of this review is to critically evaluate the characterization techniques used to analyze the biodegradation of polystyrene by insects and associated microorganisms. The aim is to identify the strengths and limitations of these techniques, as well as their contribution to the knowledge of polystyrene degradation in an environmental context. A bibliometric analysis and a systematic review based on the PRISMA method were carried out, analyzing 100 articles from the Scopus database and 83 from the Web of Science between 2015 and 2023. The statistical method applied to the metadata was bibliometric with qualitative and quantitative aspects.  The results demonstrated that the applied characterization techniques, such as scanning electron microscopy showed the formation of microbial biofilms on the surface and cavities of the biodegraded polystyrene. Likewise, gel permeation chromatography indicated changes in the morphology of the biodegraded polystyrene. Finally, Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance (H-NMR) demonstrated that signs of oxidation, depolymerization, and the incorporation of oxygen into the hydrocarbon chain of polystyrene due to the degradation process. These results emphasize the effectiveness of characterization techniques in detecting and describing significant changes in polystyrene during its biodegradation. Its understanding is crucial for future research and the evaluation of the ecological impact of polystyrene degradation by biodegrading organisms.

Downloads

Download data is not yet available.

References

Amato-Lourenço, L. F., dos Santos Galvão, L., de Weger, L. A., Hiemstra, P. S., Vijver, M. G., & Mauad, T. (2020). An emerging class of air pollutants: Potential effects of microplastics to respiratory human health? The Science of the Total Environment, 749, 141676. https://doi.org/10.1016/j.scitotenv.2020.141676

Billen, P., Khalifa, L., Van Gerven, F., Tavernier, S., & Spatari, S. (2020). Technological application potential of polyethylene and polystyrene biodegradation by macro-organisms such as mealworms and wax moth larvae. Science of The Total Environment, 735, 139521. https://doi.org/10.1016/j.scitotenv.2020.139521

Brandon, A. M., Garcia, A. M., Khlystov, N. A., Wu, W.-M., & Criddle, C. S. (2021). Enhanced Bioavailability and Microbial Biodegradation of Polystyrene in an Enrichment Derived from the Gut Microbiome of Tenebrio molitor (Mealworm Larvae). Environmental Science & Technology, 55(3), 2027-2036. https://doi.org/10.1021/acs.est.0c04952

Castañeta, G., Gutiérrez, A. F., Nacaratte, F., & Manzano, C. A. (2020). Microplásticos: Un contaminante que crece en todas las esferas ambientales, sus características y posibles riesgos para la salud pública por exposición. Revista Boliviana de Química, 37(3), 142-157.

Cucini, C., Funari, R., Mercati, D., Nardi, F., Carapelli, A., & Marri, L. (2022). Polystyrene shaping effect on the enriched bacterial community from the plastic-eating Alphitobius diaperinus (Insecta: Coleoptera). Symbiosis, 86(3), 305-313. https://doi.org/10.1007/s13199-022-00847-y

Dioses-Salinas, D. C., Pizarro-Ortega, C. I., & De-la-Torre, G. E. (2020). A methodological approach of the current literature on microplastic contamination in terrestrial environments: Current knowledge and baseline considerations. Science of The Total Environment, 730, 139164. https://doi.org/10.1016/j.scitotenv.2020.139164

Fu, C., Muhammad, A., Noreen, K., Atia, N., Kashif, I., Usman, A., Mohammed, A., Jung, M., & Ali, N. (2023). Interactive effects of polystyrene microplastics and Pb on growth and phytochemicals in mung bean (Vigna radiata L.). Journal of Hazardous Materials, 449, 130966. https://doi.org/10.1016/j.jhazmat.2023.130966

Guangorena, G., & Kobayashi, T. (2024) Properties of chitin and its regenerated hydrogels from the insect Zophobas morio fed citrus biomass or polystyrene. Gels, 10(7), 433. https://doi.org/10.3390/gels10070433

He, L., Yang, S., Ding, J., Li, Z., Pang, J., Xing, D., Zhao, L., Zheng, H., Ren, N., & Wu, W. (2023). Responses of gut microbiomes to commercial polyester polymer biodegradation in Tenebrio molitor Larvae. Journal of Hazardous Materials, 457, 131759. https://doi.org/10.1016/j.jhazmat.2023.131759

Hwang, J., Choi, D., Han, S., Jung, S. Y., Choi, J., & Hong, J. (2020). Potential toxicity of polystyrene microplastic particles. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-64464-9

Iswahyudi, I., Wahyu, V., Guau, G., Adi, S., Garfansa, M., Mujiyanti, W., & Sholeh, M. (2024) Investigating the impact of microplastics type of polyethylene, polypropylene, and polystyrene on seed germination and early growth of rice plants. Environmental Quality Management, 34(1). https://doi.org/10.1002/tqem.22287

Jiang, S., Su, T., Zhao, J., & Wang, Z. (2021). Biodegradation of Polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus Larvae and Comparison of Their Degradation Effects. Polymers, 13(20), Article 20. https://doi.org/10.3390/polym13203539

Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M., & Klobučar, G. (2019). Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution, 250, 831-838. https://doi.org/10.1016/j.envpol.2019.04.055

Kang, M., Kwak, M., & Kim, Y. (2023). Polystyrene microplastics biodegradation by gut bacterial Enterobacter hormaechei from mealworms under anaerobic conditions: Anaerobic oxidation and depolymerization. Journal of Hazardous Materials, 5(459), 132045.

https://doi.org/10.1016/j.jhazmat.2023.132045

Kim, H. R., Lee, H. M., Yu, H. C., Jeon, E., Lee, S., Li, J., & Kim, D.-H. (2020). Biodegradation of Polystyrene by Pseudomonas sp. Isolated from the Gut of Superworms (Larvae of Zophobas atratus). Environmental Science & Technology, 54(11), 6987-6996. https://doi.org/10.1021/acs.est.0c01495

Kundungal, H., Synshiang, K., & Devipriya, S. P. (2021). Biodegradation of polystyrene wastes by a newly reported honey bee pest Uloma sp. larvae: An insight to the ability of polystyrene-fed larvae to complete its life cycle. Environmental Challenges, 4, 100083. https://doi.org/10.1016/j.envc.2021.100083

Lee, H. M., Kim, H. R., Jeon, E., Yu, H. C., Lee, S., Li, J., & Kim, D.-H. (2020). Evaluation of the Biodegradation Efficiency of Four Various Types of Plastics by Pseudomonas aeruginosa Isolated from the Gut Extract of Superworms. Microorganisms, 8(9), 1341. https://doi.org/10.3390/microorganisms8091341

Lin, H.-H., & Liu, H.-H. (2020). FTIR Analysis of Biodegradation of Polystyrene by Intestinal Bacteria Isolated from Zophobas Morio and Tenebrio Molitor. Proceedings of Engineering and Technology Innovation, 17. https://doi.org/10.46604/peti.2021.5450

Lixia, D., Shunyan, C., Jiaxing, L., Jiawei, C., Fengyuan, C., Xiaodong, Z., Hongbin, L. (2024). Nanoplastics impair growth and nitrogen fixation of marine nitrogen-fixing cyanobacteria. Environmental Pollution, 350, 123960. https://doi.org/10.1016/j.envpol.2024.123960

López Aguirre, J. F., Pomaquero Yuquilema, J. C., & López Salazar, J. L. (2020). Análisis de la contaminación ambiental por plásticos en la ciudad de Riobamba. Polo del Conocimiento: Revista científico - profesional, 5(12), 725-742.

Lou, Y., Ekaterina, P., Yang, S.-S., Lu, B., Liu, B., Ren, N., Corvini, P. F.-X., & Xing, D. (2020). Biodegradation of Polyethylene and Polystyrene by Greater Wax Moth Larvae (Galleria mellonella L.) and the Effect of Co-diet Supplementation on the Core Gut Microbiome. Environmental Science & Technology, 54(5), 2821-2831. https://doi.org/10.1021/acs.est.9b07044

Lou, Y., Li, Y., Lu, B., Liu, Q., Yang, S.-S., Liu, B., Ren, N., Wu, W.-M., & Xing, D. (2021). Response of the yellow mealworm (Tenebrio molitor) gut microbiome to diet shifts during polystyrene and polyethylene biodegradation. Journal of Hazardous Materials, 416, 126222. https://doi.org/10.1016/j.jhazmat.2021.126222

Lu, B., Lou, Y., Wang, J., Liu, Q., Yang, S., Ren, N., Wu, W., & Xing, D. (2024). Understanding the Ecological Robustness and adaptability of the gut microbiome in plastic-degrading superworms (Zophobas atratus) in response to microplastic and antibiotics. Bioremediation and Biotechnology, 58(27), 12028-12041. https://doi.org/10.1021/acs.est.4c01692

Lv, S. Wang, Q., Li, Y., Li, G., Hu, R., Chen, Z., & Shao, Z. (2024). Biodegradation of polystyrene (PS) and polypropylene (PP) by deep-sea psychrophilic bacteria of Pseudoalteromonas in accompany with simultaneous release of microplastics and nanoplastics, Science of the Total Environment, 948, 174857. https://doi.org/10.1016/j.scitotenv.2024.174857

Machona, O., Chidzwondo, F., & Mangoyi, R. (2022). Tenebrio molitor: Possible source of polystyrene-degrading bacteria. BMC Biotechnology, 22(1), 2. https://doi.org/10.1186/s12896-021-00733-3

Marmanillo, V. I. V., Farfán, B. C., Camino, K. L. S., Llasa, G. J. S., & Nina, B. A. H. (2021). Aislamiento de enterobacterias de tenebrio molitor (coleoptera: Tenebrionidae) como organismos degradadores del poliestireno expandido bajo condiciones de laboratorio. Ciencia Latina Revista Científica Multidisciplinar, 5(6), 11169-11185. https://doi.org/10.37811/cl_rcm.v5i6.1160

Massuga, F., Larson, M. A., Kuasoski, M., & Doliveira, S. L. D. (2022). Plastic Waste and Sustainability: Reflections and Impacts of the Covid-19 Pandemic in the Socio-Cultural and Environmental Context. Revista de Gestão Social e Ambiental, 16(1), Article 1. https://doi.org/10.24857/rgsa.v16.2860

Meng, T. K., Kassim, A. S. B. M., Razak, A. H. B. A., & Fauzi, N. A. B. M. (2021). Bacillus megaterium: A Potential and an Efficient Bio-Degrader of Polystyrene. Braz. Arch. Biol. Technol, e21190321-e21190321.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71

Palmer, K. J., Lauder, K., Christopher, K., Guerra, F., Welch, R., & Bertuccio, A. J. (2022). Biodegradation of Expanded Polystyrene by Larval and Adult Stages of Tenebrio molitor with Varying Substrates and Beddings. Environmental Processes, 9(1), 3. https://doi.org/10.1007/s40710-021-00556-6

Pham, T., Longing, S., & Siebecker, M. (2023). Consumption and degradation of different consumer plastics by mealworms (Tenebrio molitor): Effects of plastic type, time, and mealworm origin. Journal of Cleaner Production, 403, 136842. https://doi.org/10.1016/j.jclepro.2023.136842

Peng, B.-Y., Li, Y., Fan, R., Chen, Z., Chen, J., Brandon, A. M., Criddle, C. S., Zhang, Y., & Wu, W.-M. (2020). Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environmental Pollution, 266, 115206. https://doi.org/10.1016/j.envpol.2020.115206

Peng, B.-Y., Su, Y., Chen, Z., Chen, J., Zhou, X., Benbow, M. E., Criddle, C. S., Wu, W.-M., & Zhang, Y. (2019). Biodegradation of Polystyrene by Dark (Tenebrio obscurus) and Yellow (Tenebrio molitor) Mealworms (Coleoptera: Tenebrionidae). Environmental Science & Technology, 53(9), 5256-5265. https://doi.org/10.1021/acs.est.8b06963

Rana, R., Akram, H., Shirin, S., Biplob, D., Ahmod, M., & Tanwne, S. (2024). Microplastics increase cadmium absorption and impair nutrient uptake and growth in red amaranth (Amaranthus tricolor L.) in the presence of cadmium and biochar. BMC Plant Biology, 24, 608. https://doi.org/10.1186/s12870-024-05312-0

Rosenboom, J.-G., Langer, R., & Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7(2), Article 2. https://doi.org/10.1038/s41578-021-00407-8

Shubham, V., O´Connor, O., Gora, A., Rehman, S., Kiron, V., Siriyappagouder, P., Dahle, D., Kógel, T., Ornsrud, R., & Olsvik, P. (2024). Mixture toxicity of 6PPD-quinone and polystyrene nanoplastics in zebrafish. Environmental Pollution, 348, 123835. https://doi.org/10.1016/j.envpol.2024.123835

Sufang, Z., Renju, L., Shiwei, L., Benjuan, Z., Juan, W., & Zongze, S. (2024). Polystyrene-degrading bacteria in the gut microbiome of marine benthic polychaetes support enhanced digestion of plastic fragments. Communications Earth and Environment, 5(162). https://doi.org/10.1038/s43247-024-01318-6

Tang, Z.-L., Kuo, T.-A., & Liu, H.-H. (2017). The Study of the Microbes Degraded Polystyrene. Advances in Technology Innovation, 2(1), Article 1.

Tsochatzis, E., Berggreen, I. E., Tedeschi, F., Ntrallou, K., Gika, H., & Corredig, M. (2021). Gut Microbiome and Degradation Product Formation during Biodegradation of Expanded Polystyrene by Mealworm Larvae under Different Feeding Strategies. Molecules (Basel, Switzerland), 26(24), 7568. https://doi.org/10.3390/molecules26247568

Urbanek, A. K., Rybak, J., Wróbel, M., Leluk, K., & Mirończuk, A. M. (2020). A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. Environmental Pollution, 262, 114281. https://doi.org/10.1016/j.envpol.2020.114281

Ventura, E., Goncalves, J., Vilke, J., de Errico, G., Benedetti, M., Regolio, F., & Bebianno, M. (2024). Are mixtures of micro/nanoplastics more toxic than individual micro or nanoplastic contamination in the clam Ruditapes decussatus?. Marine Pollution Bulletin, 206, 116697. https://doi.org/10.1016/j.marpolbul.2024.116697

Wang, Q., Chen, H., Gu, W., Wang, S., & Li, Y. (202). Biodegradation of aged polyethylene (PE) and polystyrene (PS) microplastics by yellow mealworms (Tenebrio molitor larvae). Science of The Total Environment, 927, 172243. https://doi.org/10.1016/j.scitotenv.2024.172243

Wang, S., Shi, W., Huang, Z., Zhou, N., Xie, Y., Tang, Y., Hu, F., Liu, G., & Zheng, H. (2022). Complete digestion/biodegradation of polystyrene microplastics by greater wax moth (Galleria mellonella) larvae: Direct in vivo evidence, gut microbiota independence, and potential metabolic pathways. Journal of Hazardous Materials, 423, 127213. https://doi.org/10.1016/j.jhazmat.2021.127213

Wang, S., Yu, H., Li, W., Song, E., Zhao, Z., Xu, J., Gao, S., Wang, D., & Xie, Z. (2024). Biodegradation of four polyolefin plastics in superworms (Larvae of Zophobas atratus) and effects on the gut microbiome. Journal of Hazardous Materials, 477, 135381. https://doi.org/10.1016/j.jhazmat.2024.135381

Wang, Z., Xin, X., Shi, X., & Zhang, Y. (2020). A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum. The Science of the Total Environment, 726, 138564. https://doi.org/10.1016/j.scitotenv.2020.138564

Woo, S., Song, I., & Cha, H. J. (2020). Fast and Facile Biodegradation of Polystyrene by the Gut Microbial Flora of Plesiophthalmus davidis Larvae. Applied and Environmental Microbiology, 86(18), e01361-20. https://doi.org/10.1128/AEM.01361-20

Yang, L., Gao, J., Liu, Y., Zhuang, G., Peng, X., Wu, W.-M., & Zhuang, X. (2021). Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere, 262, 127818. https://doi.org/10.1016/j.chemosphere.2020.127818

Yang, S.-S., Brandon, A. M., Andrew Flanagan, J. C., Yang, J., Ning, D., Cai, S.-Y., Fan, H.-Q., Wang, Z.-Y., Ren, J., Benbow, E., Ren, N.-Q., Waymouth, R. M., Zhou, J., Criddle, C. S., & Wu, W.-M. (2018). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191, 979-989. https://doi.org/10.1016/j.chemosphere.2017.10.117

Yang, S.-S., Wu, W.-M., Brandon, A. M., Fan, H.-Q., Receveur, J. P., Li, Y., Wang, Z.-Y., Fan, R., McClellan, R. L., Gao, S.-H., Ning, D., Phillips, D. H., Peng, B.-Y., Wang, H., Cai, S.-Y., Li, P., Cai, W.-W., Ding, L.-Y., Yang, J., … Criddle, C. S. (2018). Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere, 212, 262-271. https://doi.org/10.1016/j.chemosphere.2018.08.078

Yang, Y., Wang, J., & Xia, M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of The Total Environment, 708, 135233. https://doi.org/10.1016/j.scitotenv.2019.135233

Yang, X., Wen, P., Yang, Y., Jia, P., Li, W., & Pei, D. (2023). Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1001750

Yang, Y., Yang, J., Wu, W.-M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015a). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environmental Science & Technology, 49(20), 12080-12086. https://doi.org/10.1021/acs.est.5b02661

Yang, Y., Yang, J., Wu, W.-M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015b). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. Environmental Science & Technology, 49(20), 12087-12093. https://doi.org/10.1021/acs.est.5b02663

Ying, H., Jiang, S., Zhang, Q., Zhou, W., Liang, J., Xu, Y., & Su, W. (2024). Protective effect of Cordycepin on blood-testis barrier against pre-puberty polystyrene nanoplastics exposure in male rats. Particle and Fibre Toxicology, 21 (1): 30. https://doi.org/10.1186/s12989-024-00590-w

Yolanda, D., Anggiani, M., Agung, M., Anggraeni, S., & Afianti, N. (2024). Polystyrene microplastics degradation by microbial consortium from jakarta bay. Environmental Quality Management, 34(1), e22291. https://doi: 10.1002/tqem.22291

Yoon, J., Kim, B., & Kim, K. (2024). Distribution of microplastics in soil by types of land use in metropolitan area of Seoul. Applied Biological Chemistry, 67(15). https://doi.org/10.1186/s13765-024-00869-8

Young, R., Ahmed, K., Court, L., Castro, C., Marcora, A., Boctor, J., Paull, C., Wijffels, G., Rane, R., Edwards, O., Walsh, T., & Pandey, G. (2024). Improved reference quality genome sequence of the plastic-degrading greater wax moth, Galleria mellonella. G3(bethesda), 14(6), jkae070. https://doi: 10.1093/g3journal/jkae070

Yue, X., Xiu, C., Zhang, M., Hou, W., Chong, Z., Jia, L., Da-Lei, Z., Liao, H., Yan, C., Jian, H., Tao, L., & Li-Ping, Z. (2024). Polystyrene nanoplastics induce apoptosis, autophagy, and steroido-genesis disruption in granulosa cells to reduce oocyte quality and fertility by inhibiting the PI3K/AKT pathway in female mice. Journal of Nanobiotechnology, 22(1), 460. https://doi.org/10.1186/s12951-024-02735-7.

Zhen, Z., Wenrui, S., Peiwen, Y., Shixiu, W., Liming, C., Zhaowen, C., Liang, L., Faisal, K., Menghong, H., Rong, X., & Youji, W. (2024). Bio-based microplastic polylactic acid exerts the similar toxic effects to traditional petroleum-based microplastic polystyrene in mussels. Science Total Environmental, 10, 946, 174386. https://doi: 10.1016/j.scitotenv.2024.174386.

Zhuang, H., Zhenxia, L., Menglin, W., Bo, L., Yiwen, C., & Ziyu, L. (2024). Effects of microplastics and combined pollution of polystyrene and di-n-octyl phthalate on photosynthesis of cucumber (Cucumis sativus L.). Science of the Total Environment, 947, 174426. https://doi.org/10.1016/j.scitotenv.2024.174426

Published

2024-08-31

How to Cite

Carreño-Farfán, C., Sánchez Purihuaman, M., Barrios-Mendoza, T. O., Córdova-Barrios, I. C., Vásquez Llanos, S., Córdova-Mendoza, P., & Barturén Quispe, A. P. (2024). Degradation of polystyrene by insects and associated microorganisms: bibliometric analysis and a narrative review of techniques used in characterization. Manglar, 21(3), 359-370. https://doi.org/10.57188/manglar.2024.039

Most read articles by the same author(s)