Beef marbling measurement using spectral imaging: A multiple linear regression approach

Autores

  • Victor Aredo Departamento de Operaciones Unitarias. Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Av. República de Venezuela s/n, Lima
  • Lía Velásquez Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga
  • Nikol Siche Escuela de Ingeniería Zootecnista, Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo

DOI:

https://doi.org/10.57188/manglar.2023.038

Resumo

This study aimed at measuring beef marbling scores in an objective and simple manner through spectral imaging and multiple linear regression (MLR). Beef marbling prediction by hyperspectral imaging and partial least squares regression (PLSR) was analyzed to calibrate and evaluate an MLR model with a few selected wavelengths. Data came from 44 beef samples and consisted of their spectral signatures (75 wavelengths) from hyperspectral reflectance images (400-1000 nm) and their marbling scores assigned by evaluators. The wavelengths that presented regression coefficients with the highest absolute values in the PLSR model, were used to calibrate the MLR model by a backward stepwise approach (p < 0.05). The coefficient of determination for prediction (R2p) and the standard error of prediction (SEP) were evaluated. The MLR model was suitable for practical use because it required only 12 wavelengths for reliable predictions (R2p = 0.824 > 0.8; SEP = 11.4% < 15%). A model is proposed for the objective and simple measurement of beef marbling score using multispectral imaging technology.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Alomar, D., Gallo, C., Castaneda, M., & Fuchslocher, R. (2003). Chemical and discriminant analysis of bovine meat by near infrared reflectance spectroscopy (NIRS). Meat science, 63(4), 441-450. https://doi.org/10.1016/S0309-1740(02)00101-8

Aredo, V., Velásquez, L., & Siche, R. (2017). Prediction of beef marbling using hyperspectral imaging (HSI) and partial least squares regression (RMCP). Scientia Agropecuaria, 8(2), 169-174. http://dx.doi.org/10.17268/sci.agropecu.2017.02.09

Aredo, V., Velásquez, L., Carranza-Cabrera, J., & Siche, R. (2019). Predicting of the Quality Attributes of Orange Fruit Using Hyperspectral Images. Journal of food quality and hazards control, 6, 82-92. http://dx.doi.org/10.18502/jfqhc.6.3.1381

Çetin, N., Karaman, K., Kavuncuoğlu, E., Yıldırım, B., & Jahanbakhshi, A. (2022). Using hyperspectral imaging technology and machine learning algorithms for assessing internal quality parameters of apple fruits. Chemometrics and Intelligent Laboratory Systems, 230, 104650. https://doi.org/10.1016/j.chemolab.2022.104650

Bro, R., & Smilde, A. K. (2014). Principal component analysis. Analytical methods, 6(9), 2812-2831. https://doi.org/10.1039/C3AY41907J

Cheng, W., Cheng, J. H., Sun, D. W., & Pu, H. (2015). Marbling analysis for evaluating meat quality: Methods and techniques. Comprehensive Reviews in Food Science and Food Safety, 14(5), 523-535. https://doi.org/10.1111/1541-4337.12149

Cozzolino, D., & Murray, I. (2002). Effect of sample presentation and animal muscle species on the analysis of meat by near infrared reflectance spectroscopy. Journal of Near Infrared Spectroscopy, 10(1), 37-44.

Dong, J., Guo, W., Wang, Z., Liu, D., & Zhao, F. (2016). Nondestructive determination of soluble solids content of ‘Fuji’apples produced in different areas and bagged with different materials during ripening. Food Analytical Methods, 9, 1087-1095. https://doi.org/10.1007/s12161-015-0278-4

Echegaray, N., Hassoun, A., Jagtap, S., Tetteh-Caesar, M., Kumar, M., Tomasevic, I., ... , & Lorenzo, J. M. (2022). Meat 4.0: Principles and applications of Industry 4.0 technologies in the meat industry. Applied Sciences, 12(14), 6986. https://doi.org/10.3390/app12146986

ElMasry, G., Wang, N., ElSayed, A., & Ngadi, M. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of food engineering, 81(1), 98-107. https://doi.org/10.1016/j.jfoodeng.2006.10.016

Gagaoua, M., Duffy, G., Álvarez García, C., Burgess, C., Hamill, R., Crofton, E. C., ... & Troy, D. (2022). Current research and emerging tools to improve fresh red meat quality. Irish Journal of Agricultural and Food Research, 61(1), 145-167. https://doi.org/10.15212/ijafr-2020-0141

Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica chimica acta, 185, 1-17. https://doi.org/10.1016/0003-2670(86)80028-9

Jia, W., van Ruth, S., Scollan, N., & Koidis, A. (2022). Hyperspectral imaging (HSI) for meat quality evaluation across the supply chain: Current and future trends. Current Research in Food Science, 5, 1017-1027. https://doi.org/10.1016/j.crfs.2022.05.016

JMGA (Japan Meat Grading Association). (2000). Beef Carcass Grading Standards. Tokyo. Japan. Retrieved from http://wagyu.org/uploads/page/JMGA%20Meat%20Grading%20Brochure_english.pdf

Khaled, A. Y., Parrish, C. A., & Adedeji, A. 2021. Emerging nondestructive approaches for meat quality and safety evaluation—A review. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3438-3463. https://doi.org/10.1111/1541-4337.12781

Khan, A., Munir, M. T., Yu, W., & Young, B. (2020). Wavelength selection for rapid identification of different particle size fractions of milk powder using hyperspectral imaging. Sensors, 20(16), 4645. https://doi.org/10.3390/s20164645

Li, Y., Shan, J., Peng, Y., & Gao, X. (2011). Nondestructive assessment of beef-marbling grade using hyperspectral imaging technology. In 2011 international conference on new technology of agricultural (pp. 779-783). IEEE. https://doi.org/10.1109/ICAE.2011.5943908

Liu, J., Ellies-Oury, M. P., Stoyanchev, T., & Hocquette, J. F. (2022). Consumer perception of beef quality and how to control, improve and predict it? Focus on eating quality. Foods, 11(12), 1732. https://doi.org/10.3390/foods11121732

Munera, S., Amigo, J. M., Aleixos, N., Talens, P., Cubero, S., & Blasco, J. (2018). Potential of VIS-NIR hyperspectral imaging and chemometric methods to identify similar cultivars of nectarine. Food Control, 86, 1-10. https://doi.org/10.1016/j.foodcont.2017.10.037

Nychas, G. J., Sims, E., Tsakanikas, P., & Mohareb, F. (2021). Data Science in the Food Industry. Annual Review of Biomedical Data Science, 4, 341-367. https://doi.org/10.1146/annurev-biodatasci-020221-123602

Özdoğan, G., Lin, X., & Sun, D. W. (2021). Rapid and noninvasive sensory analyses of food products by hyperspectral imaging: Recent application developments. Trends in Food Science & Technology, 111, 151-165. https://doi.org/10.1016/j.tifs.2021.02.044

Pereira, P. M. C. C., & Vicente, A. F. R. B. (2013). Meat nutritional composition and nutritive role in the human diet. Meat science, 93(3), 586-592. https://doi.org/10.1016/j.meatsci.2012.09.018

Pinto, D. L., Selli, A., Tulpan, D., Andrietta, L. T., Garbossa, P. L. M., Vander Voort, G., ... & Ventura, R. V. (2023). Image feature extraction via local binary patterns for marbling score classification in beef cattle using tree-based algorithms. Livestock Science, 267, 105152. https://doi.org/10.1016/j.livsci.2022.105152

Siche, R., Vejarano, R., Aredo, V., Velasquez, L., Saldana, E., & Quevedo, R. (2016). Evaluation of food quality and safety with hyperspectral imaging (HSI). Food Engineering Reviews, 8(3), 306-322. https://doi.org/10.1007/s12393-015-9137-8

Su, W. H., & Sun, D. W. (2018). Multispectral imaging for plant food quality analysis and visualization. Comprehensive reviews in food science and food safety, 17(1), 220-239. https://doi.org/10.1111/1541-4337.12317

Velásquez, L., Cruz-Tirado, J. P., Siche, R., & Quevedo, R. (2017). An application based on the decision tree to classify the marbling of beef by hyperspectral imaging. Meat Science, 133, 43-50. https://doi.org/10.1016/j.meatsci.2017.06.002

Vidal, P. O., Cardoso, R. D. C. V., Nunes, I. L., & Lima, W. K. D. S. (2022). Quality and Safety of Fresh Beef in Retail: A Review. Journal of Food Protection, 85(3), 435-447. https://doi.org/10.4315/JFP-21-294

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and intelligent laboratory systems, 58(2), 109-130. https://doi.org/10.1016/S0169-7439(01)00155-1

Xie, C., Chu, B., & He, Y. (2018). Prediction of banana color and firmness using a novel wavelengths selection method of hyperspectral imaging. Food chemistry, 245, 132-140. https://doi.org/10.1016/j.foodchem.2017.10.079

Publicado

2023-12-17

Edição

Secção

ARTÍCULO ORIGINAL

Como Citar

Beef marbling measurement using spectral imaging: A multiple linear regression approach. (2023). Manglar, 20(4), 333-339. https://doi.org/10.57188/manglar.2023.038