Delimitation of irrigation management zones in banana cultivation using satellite images and physical and chemical soil attributes

Autores/as

DOI:

https://doi.org/10.57188/

Palabras clave:

management zones, spectral indices, Smart map, Sen2r, Sentinel 2

Resumen

In banana plantations, irrigation is managed in a homogeneous way, which is inadequate due to the variability of the soil in different areas, leading to significant losses in productivity. To address this issue, the delimitation of agricultural management zones (AMZ) was proposed, based on the spatial variability of the physical and chemical soil attributes, along with information obtained from spectral indices derived from satellite imagery. Additionally, the soil-climate-plant relationship was considered to improve the accuracy and reliability of the information. For this purpose, Sentinel-2 satellite images were processed, and various spectral indices were calculated using the Sen2R package. These indices allowed the generation of AMZ in QGIS using the Smart Map plugin. The satellite images facilitated the delimitation of homogeneous zones based on spectral information. Through a correlation matrix between the mean values of physical and chemical soil variables and the spectral indices per hectare, a correlation was identified between the water stress index and factors such as sand content, electrical conductivity, soil texture class, and available water. The geospatial analysis allowed for the accurate delimitation of irrigation zones, compared to those defined solely by the physical and chemical properties of the soil. The vegetation’s response to soil characteristics, such as water retention capacity, cation exchange, and base assimilation in the soil, demonstrated the effectiveness of this delimitation.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Adla, S., Rai, N. K., Karumanchi, S. H., Tripathi, S., Disse, M., & Pande, S. (2020). Laboratory Calibration and Performance Evaluation of Low-Cost Capacitive and Very Low-Cost Resistive Soil Moisture Sensors. Sensors, 20(2), 363. https://doi.org/10.3390/s20020363

Ayele, G. T., Demissie, S. S., Jemberrie, M. A., Jeong, J., & Hamilton, D. P. (2019). Terrain Effects on the Spatial Variability of Soil Physical and Chemical Properties. Soil Systems, 4(1), 1. https://doi.org/10.3390/soilsystems4010001

Balafoutis, A. T., Beck, B., Fountas, S., Tsiropoulos, Z., Vangeyte, J., van der Wal, T., Soto-Embodas, I., Gómez-Barbero, M., & Pedersen, S. M. (2017). Smart Farming Technologies – Description, Taxonomy and Economic Impact (pp. 21–77). https://doi.org/10.1007/978-3-319-68715-5_2

Berrú-Ayala, J., Hernandez-Rojas, D., Morocho-Díaz, P., Novillo-Vicuña, J., Mazon-Olivo, B., & Pan, A. (2020). SCADA System Based on IoT for Intelligent Control of Banana Crop Irrigation (pp. 243–256). https://doi.org/10.1007/978-3-030-42517-3_19

Blum, A. (2011). Plant Water Relations, Plant Stress and Plant Production. In Plant Breeding for Water-Limited Environments (pp. 11–52). Springer New York. https://doi.org/10.1007/978-1-4419-7491-4_2

Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 151, 61–69. https://doi.org/10.1016/j.compag.2018.05.012

Coelho, E. F., Santos, M. R. dos, Donato, S. L. R., Cruz, J. L., Oliveira, P. M. de, & Castricini, A. (2019). Soil-water-plant relationship and fruit yield under partial root-zone drying irrigation on banana crop. Scientia Agricola, 76(5), 362–367. https://doi.org/10.1590/1678-992x-2017-0258

Cohen, S., Cohen, Y., Alchanatis, V., & Levi, O. (2013). Combining spectral and spatial information from aerial hyperspectral images for delineating homogenous management zones. Biosystems Engineering, 114(4), 435–443. https://doi.org/10.1016/j.biosystemseng.2012.09.003

Cui, X., Han, W., Zhang, H., Dong, Y., Ma, W., Zhai, X., Zhang, L., & Li, G. (2023). Estimating and mapping the dynamics of soil salinity under different crop types using Sentinel-2 satellite imagery. Geoderma, 440, 116738. https://doi.org/10.1016/j.geoderma.2023.116738

Damian, J. M., Pias, O. H. de C., Cherubin, M. R., Fonseca, A. Z. da, Fornari, E. Z., & Santi, A. L. (2020). Applying the NDVI from satellite images in delimiting management zones for annual crops. Scientia Agricola, 77(1). https://doi.org/10.1590/1678-992x-2018-0055

Ding, Z., Kheir, A. M. S., Ali, M. G. M., Ali, O. A. M., Abdelaal, A. I. N., Lin, X., Zhou, Z., Wang, B., Liu, B., & He, Z. (2020). The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Scientific Reports, 10(1), 2736. https://doi.org/10.1038/s41598-020-59650-8

El-Hendawy, S., Al-Suhaibani, N., Elsayed, S., Refay, Y., Alotaibi, M., Dewir, Y. H., Hassan, W., & Schmidhalter, U. (2019). Combining biophysical parameters, spectral indices and multivariate hyperspectral models for estimating yield and water productivity of spring wheat across different agronomic practices. PLOS ONE, 14(3), e0212294. https://doi.org/10.1371/journal.pone.0212294

Erazo-Mesa, E., Murillo-Sandoval, P. J., Ramírez-Gil, J. G., Benavides, K. Q., & Sánchez, A. E. (2024). IS-SAR: an irrigation scheduling web application for Hass avocado orchards based on Sentinel-1 images. Irrigation Science, 42(3), 595–609. https://doi.org/10.1007/s00271-023-00889-0

Evans, E. A., Ballen, F. H., & Siddiq, M. (2020). Banana Production, Global Trade, Consumption Trends, Postharvest Handling, and Processing. In Handbook of Banana Production, Postharvest Science, Processing Technology, and Nutrition (pp. 1–18). Wiley. https://doi.org/10.1002/9781119528265.ch1

Ghag, S. B., & Ganapathi, T. R. (2017). Genetically modified bananas: To mitigate food security concerns. Scientia Horticulturae, 214, 91–98. https://doi.org/10.1016/j.scienta.2016.11.023

Gomez Selvaraj, M., Vergara, A., Montenegro, F., Alonso Ruiz, H., Safari, N., Raymaekers, D., Ocimati, W., Ntamwira, J., Tits, L., Omondi, A. B., & Blomme, G. (2020). Detection of banana plants and their major diseases through aerial images and machine learning methods: A case study in DR Congo and Republic of Benin. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 110–124. https://doi.org/10.1016/j.isprsjprs.2020.08.025

Gorokhova, I. N., & Pankova, E. I. (2024). Organizational Problems of Soil Salinization Monitoring on Irrigated Lands. Arid Ecosystems, 14(1), 17–24. https://doi.org/10.1134/S2079096124010062

HARRIS, A., BRYANT, R., & BAIRD, A. (2005). Detecting near-surface moisture stress in spp. Remote Sensing of Environment, 97(3), 371–381. https://doi.org/10.1016/j.rse.2005.05.001

Igor, B., Leon Josip, T., & Paulo, P. (2020). Agriculture Management Impacts on Soil Properties and Hydrological Response in Istria (Croatia). Agronomy, 10(2), 282. https://doi.org/10.3390/agronomy10020282

Kureel, N., Sarup, J., Matin, S., Goswami, S., & Kureel, K. (2022). Modelling vegetation health and stress using hypersepctral remote sensing data. Modeling Earth Systems and Environment, 8(1), 733–748. https://doi.org/10.1007/s40808-021-01113-8

Luna-Romero, A., Ramírez, I., Sánchez, C., Conde, J., Agurto, L., & Villaseñor, D. (2018). Spatio-temporal distribution of precipitation in the Jubones river basin, Ecuador: 1975-2013. Scientia Agropecuaria, 9(1), 63–70. https://doi.org/10.17268/sci.agropecu.2018.01.07

MIAO, Y., MULLA, D. J., & ROBERT, P. C. (2018). An integrated approach to site-specific management zone delineation. Frontiers of Agricultural Science and Engineering. https://doi.org/10.15302/J-FASE-2018230

Mndela, Y., Ndou, N., & Nyamugama, A. (2023). Irrigation Scheduling for Small-Scale Crops Based on Crop Water Content Patterns Derived from UAV Multispectral Imagery. Sustainability, 15(15), 12034. https://doi.org/10.3390/su151512034

Panigrahi, N., Thompson, A. J., Zubelzu, S., & Knox, J. W. (2021). Identifying opportunities to improve management of water stress in banana production. Scientia Horticulturae, 276, 109735. https://doi.org/10.1016/j.scienta.2020.109735

Pereira, G. W., Valente, D. S. M., Queiroz, D. M. de, Coelho, A. L. de F., Costa, M. M., & Grift, T. (2022). Smart-Map: An Open-Source QGIS Plugin for Digital Mapping Using Machine Learning Techniques and Ordinary Kriging. Agronomy, 12(6), 1350. https://doi.org/10.3390/agronomy12061350

Priori, S., Barbetti, R., Meini, L., Morelli, A., Zampolli, A., & D’Avino, L. (2019). Towards Economic Land Evaluation at the Farm Scale Based on Soil Physical-Hydrological Features and Ecosystem Services. Water, 11(8), 1527. https://doi.org/10.3390/w11081527

Priori, S., Pellegrini, S., Vignozzi, N., & Costantini, E. A. C. (2020). Soil Physical-Hydrological Degradation in the Root-Zone of Tree Crops: Problems and Solutions. Agronomy, 11(1), 68. https://doi.org/10.3390/agronomy11010068

Ranghetti, L., Boschetti, M., Nutini, F., & Busetto, L. (2020). “sen2r”: An R toolbox for automatically downloading and preprocessing Sentinel-2 satellite data. Computers & Geosciences, 139, 104473. https://doi.org/10.1016/j.cageo.2020.104473

Rhyma, P. P., Norizah, K., Hamdan, O., Faridah-Hanum, I., & Zulfa, A. W. (2020). Integration of normalised different vegetation index and Soil-Adjusted Vegetation Index for mangrove vegetation delineation. Remote Sensing Applications: Society and Environment, 17, 100280. https://doi.org/10.1016/j.rsase.2019.100280

Sawadogo, A., Dossou-Yovo, E. R., Kouadio, L., Zwart, S. J., Traoré, F., & Gündoğdu, K. S. (2023). Assessing the biophysical factors affecting irrigation performance in rice cultivation using remote sensing derived information. Agricultural Water Management, 278, 108124. https://doi.org/10.1016/j.agwat.2022.108124

Saxton, K. E., & Rawls, W. J. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 70(5), 1569–1578. https://doi.org/10.2136/sssaj2005.0117

Song, T., Cui, X., & Yu, G. (2015). A general vector-based algorithm to generate weighted Voronoi diagrams based on ArcGIS Engine. 2015 IEEE International Conference on Mechatronics and Automation (ICMA), 941–946. https://doi.org/10.1109/ICMA.2015.7237612

Song, X., Wang, J., Huang, W., Liu, L., Yan, G., & Pu, R. (2009). The delineation of agricultural management zones with high resolution remotely sensed data. Precision Agriculture, 10(6), 471–487. https://doi.org/10.1007/s11119-009-9108-2

Tian, S. (2021). Vector-Based Realisation of Geographical Voronoi Treemaps With the ArcGIS Engine. Journal of Information Technology Research, 14(1), 37–54. https://doi.org/10.4018/JITR.2021010103

Valle Júnior, L. C. G. do, Vourlitis, G. L., Curado, L. F. A., Palácios, R. da S., Nogueira, J. de S., Lobo, F. de A., Islam, A. R. M. T., & Rodrigues, T. R. (2021). Evaluation of FAO-56 Procedures for Estimating Reference Evapotranspiration Using Missing Climatic Data for a Brazilian Tropical Savanna. Water, 13(13), 1763. https://doi.org/10.3390/w13131763

Varma, V., & Bebber, D. P. (2019). Climate change impacts on banana yields around the world. Nature Climate Change, 9(10), 752–757. https://doi.org/10.1038/s41558-019-0559-9

Vélez, S., Ariza-Sentís, M., Panić, M., Ivošević, B., Stefanović, D., Kaivosoja, J., & Valente, J. (2024). Speeding up UAV-based crop variability assessment through a data fusion approach using spatial interpolation for site-specific management. Smart Agricultural Technology, 8, 100488. https://doi.org/10.1016/j.atech.2024.100488

Verheijen, F. G. A., Zhuravel, A., Silva, F. C., Amaro, A., Ben-Hur, M., & Keizer, J. J. (2019). The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma, 347, 194–202. https://doi.org/10.1016/j.geoderma.2019.03.044

Villaseñor, D., Cobos, J. D., Cruz, A., Rivera, W., Mendoza, M. J., & Miranda, K. (2021, December 5). Estudio de suelos con fines de generación de Unidades de Gerenciamiento Agronómico. Día Mundial Del Suelo.

Villazón Gómez, J. A., Noris Noris, P., & Martín Gutiérrez, G. (2021). Determinación de la precipitación efectiva en áreas agropecuarias de la provincia de Holguín. Idesia (Arica), 39(2), 85–90. https://doi.org/10.4067/S0718-34292021000200085

Villegas Santa, L., & Castañeda Sánchez, D. A. (2020). Multivariate analysis to model yield variability for defined management zones in a banana agroecosystem. DYNA, 87(214), 165–172. https://doi.org/10.15446/dyna.v87n214.84827

Welikhe, P., Quansah, J. E., Fall, S., & McElhenney, W. (2017). Estimation of Soil Moisture Percentage Using LANDSAT-based Moisture Stress Index. Journal of Remote Sensing & GIS, 06(02). https://doi.org/10.4172/2469-4134.1000200

Wikantika, K., Ghazali, M. F., Dwivany, F. M., Novianti, C., Yayusman, L. F., & Sutanto, A. (2022). Integrated Studies of Banana on Remote Sensing, Biogeography, and Biodiversity: An Indonesian Perspective. Diversity, 14(4), 277. https://doi.org/10.3390/d14040277

Wu, T., Zhang, Z., Wang, Q., Jin, W., Meng, K., Wang, C., Yin, G., Xu, B., & Shi, Z. (2024). Estimating rice leaf area index at multiple growth stages with Sentinel-2 data: An evaluation of different retrieval algorithms. European Journal of Agronomy, 161, 127362. https://doi.org/10.1016/j.eja.2024.127362

Yonow, T., Ramirez-Villegas, J., Abadie, C., Darnell, R. E., Ota, N., & Kriticos, D. J. (2019). Black Sigatoka in bananas: Ecoclimatic suitability and disease pressure assessments. PLOS ONE, 14(8), e0220601. https://doi.org/10.1371/journal.pone.0220601

Zinkernagel, J., Maestre-Valero, Jose. F., Seresti, S. Y., & Intrigliolo, D. S. (2020). New technologies and practical approaches to improve irrigation management of open field vegetable crops. Agricultural Water Management, 242, 106404. https://doi.org/10.1016/j.agwat.2020.106404

Descargas

Publicado

12/19/2024

Número

Sección

ARTÍCULO ORIGINAL

Cómo citar

Delimitation of irrigation management zones in banana cultivation using satellite images and physical and chemical soil attributes. (2024). Manglar, 21(4), 443-451. https://doi.org/10.57188/

Artículos similares

21-30 de 260

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a