Aislamiento e identificación de Bacillus spp. del manglar: Características morfológicas, bioquímicas, fisiológicas y pruebas de inhibición
DOI:
https://doi.org/10.57188/Palabras clave:
biodiversidad, cepas, ecosistema, microbiología, sedimentoResumen
Las bacterias del género Bacillus son conocidas por sus beneficios en el campo de la acuicultura, ya que algunas cepas producen enzimas, antibióticos y compuestos bioactivos que promueven el control biológico, y un ecosistema equilibrado. En este estudio, se aislaron y caracterizaron morfológicamente cepas de Bacillus a partir de sedimentos del manglar de Puerto Hualtaco. Se recolectaron tres muestras de sedimento y se cultivaron en agar cromogénico durante 24 a 48 horas. Se realizaron pruebas bioquímicas, análisis de crecimiento a diferentes niveles de pH y salinidad, y se caracterizaron las bacterias según su morfología micro y macroscópica. Los resultados mostraron una gran diversidad en la forma y color de las colonias, una alta versatilidad metabólica y resistencia de las cepas a diferentes ambientes, lo que sugiere un gran potencial biotecnológico. Este estudio enriquece el conocimiento sobre la biodiversidad microbiana en los manglares y subraya la importancia de las bacterias Bacillus en estos ecosistemas.
Descargas
Referencias
Afrin, S., & Bhuiyan, M. N. I. (2023). Antagonistic activity of Bacillus amyloliquefaciens subsp. amyloliquefaciens against multidrug resistant Serratia rubidaea. Current Research in Microbial Sciences, 5, 100206. https://doi.org/10.1016/J.CRMICR.2023.100206
Afrin, S., Tamanna, T., Shahajadi, U. F., Bhowmik, B., Jui, A. H., Miah, Md. A. S., & Bhuiyan, M. N. I. (2024). Characterization of protease-producing bacteria from garden soil and antagonistic activity against pathogenic bacteria. The Microbe, 4, 100123. https://doi.org/10.1016/J.MICROB.2024.100123
Ali, B., Wang, X., Saleem, M. H., Azeem, M. A., Afridi, M. S., Nadeem, M., Ghazal, M., Batool, T., Qayyum, A., Alatawi, A., & Ali, S. (2022). Bacillus mycoides PM35 Reinforces Photosynthetic Efficiency, Antioxidant Defense, Expression of Stress-Responsive Genes, and Ameliorates the Effects of Salinity Stress in Maize. Life, 12(2), 219. https://doi.org/10.3390/LIFE12020219/S1
Ali, M. A. M., Musa, R., Ali, A. A., Ali, Y., & Hamadnalla, H. M. Y. (2020). Isolation and Identification of Bacteria From Dried Fermented Leaves of Cassia obtusifolia L. (Kawal). Clinical Medicine and Medical Research, 1(1), 16–20. http://clinicalmedicine.in/index.php/cmmr/article/view/6
Alippi, A. M. (2019). Data associated with the characterization and presumptive identification of Bacillus and related species isolated from honey samples by using HiCrome Bacillus agar. Data in Brief, 25, 104206. https://doi.org/10.1016/J.DIB.2019.104206
Alippi, A. M., & Abrahamovich, E. (2019). HiCrome Bacillus agar for presumptive identification of Bacillus and related species isolated from honey samples. International Journal of Food Microbiology, 305, 108245. https://doi.org/10.1016/J.IJFOODMICRO.2019.108245
Alyousif, N. A. (2022). Distribution, occurrence and molecular characterization of Bacillus related species isolated from different soil in Basrah Province, Iraq. Biodiversitas Journal of Biological Diversity, 23(2), 679–686. https://doi.org/10.13057/BIODIV/D230209
Ambas, I., Suriawan, A., & Fotedar, R. (2013). Immunological responses of customised probiotics-fed marron, Cherax tenuimanus, (Smith 1912) when challenged with Vibrio mimicus. Fish & Shellfish Immunology, 35(2), 262–270. https://doi.org/10.1016/J.FSI.2013.04.026
Bahuguna, A., Joe, A.-R., Kumar, V., Lee, J. S., Kim, S.-Y., Moon, J.-Y., Cho, S.-K., Cho, H., & Kim, M. (2020). Study on the Identification Methods for Effective Microorganisms in Commercially Available Organic Agriculture Materials. Microorganisms, 8(10), 1568. https://doi.org/10.3390/MICROORGANISMS8101568
Baskaran, V., Mahalakshmi. A, & Prabavathy. V R. (2023). Mangroves: A hotspot for novel bacterial and archaeal diversity. Rhizosphere, 27, 100748. https://doi.org/10.1016/J.RHISPH.2023.100748
Carrera, M. de L. (2010). Producción de Bacillun thuringiensis, Berliner a Nivel de Laboratorio [Tesis para la obtención del título de Doctora en Bioquímica Farmacia, Escuela Superior Politécnica de Chimborazo].
Carrera, R. (2023). Aislamiento e identificación bioquímica de una cepa bacteriana para su aplicación en el tratamiento de agua residual [Universidad Autónoma del Estado de Morelos].
Carvajal-Oses, M., Herrera-Ulloa, A., Valdés-Rodríguez, B., & Campos-Rodríguez, R. (2019). Manglares y sus Servicios Ecosistémicos: hacia un Desarrollo Sostenible. Gestión y Ambiente, 22(2), 277–290. https://doi.org/10.15446/ga.v22n2.80639
Castro, R. A., Quecine, M. C., Lacava, P. T., Batista, B. D., Luvizotto, D. M., Marcon, J., Ferreira, A., Melo, I. S., & Azevedo, J. L. (2014). Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. SpringerPlus, 3(1), 1–9. https://doi.org/10.1186/2193-1801-3-382
Chen, Y. A., Chiu, W. C., Wang, T. Y., Wong, H. C., & Tang, C. T. (2024). Isolation and characterization of an antimicrobial Bacillus subtilis strain O-741 against Vibrio parahaemolyticus. PLOS ONE, 19(4). https://doi.org/10.1371/JOURNAL.PONE.0299015
Constanza, L., Ramírez, C., Consuelo, L., Leal, S., Yurieth, Z., Galvez, A., Estefanía, V., & Burbano, M. (2014). Bacillus: género bacteriano que demuestra ser un importante solubilizador de fosfato. Nova, 12(22), 165–178.
Dame, Z. T., Rahman, M., & Islam, T. (2021). Bacilli as sources of agrobiotechnology: recent advances and future directions. Green Chemistry Letters and Reviews, 14(2), 246–271. https://doi.org/10.1080/17518253.2021.1905080
Devi, S., Kiesewalter, H. T., Kovács, R., Frisvad, J. C., Weber, T., Larsen, T. O., Kovács, Á. T., & Ding, L. (2019). Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001. Synthetic and Systems Biotechnology, 4(3), 142–149. https://doi.org/10.1016/J.SYNBIO.2019.08.002
El-Arabi, T. F., & Griffiths, M. W. (2021). Bacillus cereus. In Foodborne Infections and Intoxications (pp. 431–437). Academic Press. https://doi.org/10.1016/B978-0-12-819519-2.00011-6
García-Martínez, Y. A., Heredia, G., Guzmán-Guillermo, J., Valenzuela, R., & Raymundo, T. (2021). Hongos asociados al mangle rojo Rhizophora mangle (Rhizophoraceae) en la Reserva de la Biosfera Isla Cozumel, Quintana Roo, México. Acta Botánica Mexicana, 128, 1–27. https://doi.org/10.21829/ABM128.2021.1792
Granja, B. M., Fidelis, C. E., Garcia, B. L. N., & dos Santos, M. V. (2021). Evaluation of chromogenic culture media for rapid identification of microorganisms isolated from cows with clinical and subclinical mastitis. Journal of Dairy Science, 104(8), 9115–9129. https://doi.org/10.3168/JDS.2020-19513
Guillén-Cruz, R., Hernández-Castillo, F., Gallegos-Morales, G., Rodríguez-Herrera, R., Aguilar-González, C., Padrón-Corral, E., & Reyes-Valdés, M. (2006). Bacillus spp. como Biocontrol en un Suelo Infestado con Fusarium spp., Rhizoctonia solani Kühn y Phytophthora capsici Leonian y su Efecto en el Desarrollo y Rendimiento del Cultivo de Chile (Capsicum annuum L.). Revista Mexicana de Fitopatología, 24(2), 105–114.
Harwood, C. R. (1989). Bacillus (C. R. Harwood, Ed.; BTHA, Vol. 2). Springer US. https://doi.org/10.1007/978-1-4899-3502-1
Jackman, J. (2012). The Microbe: The Basics of Structure, Morphology, and Physiology as They Relate to Microbial Characterization and Attribution. In Chemical and Physical Signatures for Microbial Forensics (pp. 13–34). Nature Publishing Group. https://doi.org/10.1007/978-1-60327-219-3_2
Jurado, H., Fajardo, I., & Parreño, J. (2021). Procedimientos de laboratorio de Microbiología Zootécnica (1a. ed).
King, N. J., Whyte, R., & Hudson, J. A. (2007). Presence and Significance of Bacillus cereus in Dehydrated Potato Products. Journal of Food Protection, 70(2), 514–520. https://doi.org/10.4315/0362-028X-70.2.514
Komunikasi, M., Pengembangan, D., Lingkungan, T., Ramadhani, A. N., Harimawan, A., & Devianto, H. (2021). Biofilm Formation and Bio Corrosion of Carbon Steel in Diesel-Biodiesel Storage Tank. Jurnal Presipitasi : Media Komunikasi Dan Pengembangan Teknik Lingkungan, 18(1), 45–55. https://doi.org/10.14710/PRESIPITASI.V18I1.45-55
Konuray, G., & Erginkaya, Z. (2021). Identification and characterization of Bacillus coagulans strains for probiotic activity and safety. LWT, 151, 112233. https://doi.org/10.1016/J.LWT.2021.112233
Kumari, S., & Sarkar, P. K. (2016). Bacillus cereus hazard and control in industrial dairy processing environment. Food Control, 69, 20–29. https://doi.org/10.1016/J.FOODCONT.2016.04.012
Leena Sankari, S., Mahalakshmi, K., & Naveen Kumar, V. (2019). Chromogenic medium versus PCR-RFLP in the speciation of Candida: A comparative study. BMC Research Notes, 12(1), 1–4. https://doi.org/10.1186/S13104-019-4710-5
Ley-López, N., Heredia, J., San Martín-Hernández, C., Ibarra-Rodríguez, J., & García-Estrada, S. (2021). Modified Staining for observation of flagella in Bacillus amyloliquefaciens by optical microscopy. Tropical and Subtropical Agroecosystems, 24(2). https://doi.org/10.56369/tsaes.3508
Li, X., Gao, X., Zhang, S., Jiang, Z., Yang, H., Liu, X. D., Jiang, Q., & Zhang, X. (2020). Characterization of a Bacillus velezensis with antibacterial activity and inhibitory effect on common aquatic pathogens. Aquaculture, 523, 735165. https://doi.org/10.1016/J.AQUACULTURE.2020.735165
Masitoh, M. M., Hariati, A. M., & Fadjar, M. (2016). Antimicrobial Activity of Bacillus cereus and Bacillus thuringiensis on Pathogenic Vibrio harveyi in Litopenaeus vannamei. Journal Homepage: J. Life Sci. Biomed, 6(1), 10–14.
Mawarda, P. C., Mallon, C. A., Le Roux, X., van Elsas, J. D., & Salles, J. F. (2022). Interactions between Bacterial Inoculants and Native Soil Bacterial Community: The Case of Spore-forming Bacillus spp. FEMS Microbiology Ecology, 98(12), 1–11. https://doi.org/10.1093/FEMSEC/FIAC127
Medda, S., & Chandra, A. K. (1980). New Strains of Bacillus licheniformis and Bacillus coagulans producing Thermostable α‐Amylase Active at Alkaline pH. Journal of Applied Bacteriology, 48(1), 47–58. https://doi.org/10.1111/J.1365-2672.1980.TB05205.X
Montor-Antonio, J. J., Olvera-Carranza, C., Reyes-Duarte, D., Sachman-Ruiz, B., Ramírez-Coutiño, L., & Del Moral, S. (2014). Caracterización bioquímica de AmiJ33, una amilasa de Bacillus amyloliquefaciens aislada de suelos cultivados con caña de azúcar en la región del Papaloapan. Nova Scientia, 6(12), 39–59.
Najafi, A. R., Rahimpour, M. R., Jahanmiri, A. H., Roostaazad, R., Arabian, D., & Ghobadi, Z. (2010). Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology. Chemical Engineering Journal, 163(3), 188–194. https://doi.org/10.1016/J.CEJ.2010.06.044
Órdenes-Aenishanslins, N. A., Saona, L. A., Durán-Toro, V. M., Monrás, J. P., Bravo, D. M., & Pérez-Donoso, J. M. (2014). Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells. Microbial Cell Factories, 13(1), 1–10. https://doi.org/10.1186/S12934-014-0090-7
Pérez, I. (2012). Bacillus cereus y su papel en las intoxicaciones alimentarias. Revista Cubana de Salud Pública, 38(1), 98–108.
Portales, S. (2020). Calidad Microbiológica del pan: Bacillus cereus [ Universidad de Valladolid. Facultad de Medicina].
Rabbee, M. F., Sarafat, M., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. hyun. (2019). Bacillus velezensis: A Valuable Member of Bioactive Molecules within Plant Microbiomes. Molecules 2019, Vol. 24, Page 1046, 24(6), 1046. https://doi.org/10.3390/MOLECULES24061046
Rodríguez, R. (2011). Evaluación de lactonasas producidas por Bacillus Thuringiensis subsp. Kurstaki como reductor en la formación de biopelícula generada a partir de diferentes tipos de lodos de aguas residuales [Tesis para la obtención del título de Ingeniera Química, Universidad de los Andes].
Rojas-Badía, M. M., Bello-González, M. A., Ríos-Rocafull, Y., Lugo-Moya, D., & Rodríguez-Sánchez, J. (2020). Utilización de cepas de Bacillus como promotores de crecimiento en hortalizas comerciales. Acta Agronómica, 69(1), 54–60. https://doi.org/10.15446/ACAG.V69N1.79606
Romero, J., Canales, E., Meneses, P., & Herbozo, S. (2017). Aislamiento e identificación de Bacillus Thuringiensis en cultivos de plátano, para la producción de bioinsecticidas. Big Bang Faustiniano, 6(1). https://doi.org/10.51431/BBF.V6I1.48
Rosabal, D., Sola, M., & Pons, S. (2021). Efecto del pH en el crecimiento de Bacillus sp. en un medio con melaza de caña (Original). Revista Granmense De Desarrollo Local, 5(4), 252–261.
Roy, S., Saha, A., Khan, S. I., Hasan, M. M., Karim, M. M., Akhter, M. Z., Hoq, M. M., & Khan, S. N. (2022). Identification and Differentiation of Closely Related Members of Bacillus cereus group by Multiplex PCR. Bangladesh Journal of Microbiology, 39(1), 21–29. https://doi.org/10.3329/BJM.V39I1.64055
Ruiz-García, C., Béjar, V., Martínez-Checa, F., Llamas, I., & Quesada, E. (2005). Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain. International Journal of Systematic and Evolutionary Microbiology, 55(1), 191–195. https://doi.org/10.1099/IJS.0.63310-0
Saeed, S. W. Z., Naseer, I., Zahir, Z. A., Hilger, T., Shahid, S., Iqbal, Z., & Ahmad, M. (2023). Bacillus Strains with Catalase Enzyme Improve the Physiology and Growth of Rice (Oryza sativa L.). Stresses 2023, Vol. 3, Pages 736-748, 3(4), 736–748. https://doi.org/10.3390/STRESSES3040050
Sánchez, E. P., Núñez, D., Cruz, R. O., Torres, M. A., & Herrera, E. V. (2017). Simulación y Conteo de Unidades Formadoras de Colonias. Revista Electrónica de Computación, Informática, Biomédica y Electrónica, 6(1), 97–111. https://doi.org/10.32870/RECIBE.V6I1.70
Shaban, A. D., Kadhim, K. F., Shaaban, A. D., & Lafta, S. J. (2024). Improving Fungal Product Yield through Fast, Eco-friendly, and Cost-effective Chrom Genic Media Technology. Uttar Pradesh Journal of Zoology, 45(17), 477–486. https://doi.org/10.56557/UPJOZ/2024/V45I174392
Shleeva, M. O., Kondratieva, D. A., & Kaprelyants, A. S. (2023). Bacillus licheniformis: A Producer of Antimicrobial Substances, including Antimycobacterials, Which Are Feasible for Medical Applications. Pharmaceutics, 15(7). https://doi.org/10.3390/PHARMACEUTICS15071893
Soltani, M., Ghosh, K., Hoseinifar, S. H., Kumar, V., Lymbery, A. J., Roy, S., & Ringø, E. (2019). Genus Bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science & Aquaculture, 27(3), 331–379. https://doi.org/10.1080/23308249.2019.1597010
Sosa, A. I., Álvarez-Rivera, V. P., Torres, D., & Casadesús, L. (2011). Identificación y caracterización de seis aislados pertenecientes al género Bacillus promisorios para el control de Rhizoctonia solani Künh y Sclerotium rolfsii Sacc. Fitosanidad, 15(6), 39–44.
Sura, N. K., & Hiremath, L. (2019). Isolation of Bacillus megaterium and its Commercial Importance. International Journal of ChemTech Research, 12(04), 30–36. https://doi.org/10.20902/IJCTR.2019.120405
Thomas, D., Schütze, B., Heinze, W. M., & Steinmetz, Z. (2020). Sample Preparation Techniques for the Analysis of Microplastics in Soil—A Review. Sustainability, 12(21), 9074. https://doi.org/10.3390/SU12219074
Tran, C., Cock, I. E., Chen, X., & Feng, Y. (2022). Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics, 11(1). https://doi.org/10.3390/ANTIBIOTICS11010088/S1
Uono, M. T. (2019). Desenvolvimento tecnológico do Bacillus coagulans BVB5 como potencial cepa probiótica [Universidade de São Paulo]. https://doi.org/10.11606/D.9.2019.TDE-07062019-171021
Viet Cuong, P., Thi Kim Cuc, N., Thi Quyen, V., Thanh Binh, P., Van Kiem, P., Hoai Nam, N., & Tien Dat, N. (2014). Antimicrobial Constituents from the Bacillus megaterium LC Isolated from Marine Sponge Haliclona oculata. Natural Product Sciences, 20(3), 202–205.
Vivas, M., Martínez, M. S., García-Gil, F., & Salgado Brito, R. (2008). Identificación y caracterización de una bacteria degradadora de parafinas. Revista de Investigación de La Universidad Simón Bolívar, 7, 2.
Wijman, J. G. E., De Leeuw, P. P. L. A., Moezelaar, R., Zwietering, M. H., & Abee, T. (2007). Air-liquid interface biofilms of Bacillus cereus: Formation, sporulation, and dispersion. Applied and Environmental Microbiology, 73(5), 1481–1488. https://doi.org/10.1128/AEM.01781-06
Yanting, S., Yu, K., Yan, Z., Dongxuan, Z., Chang, L., Chuanzhou, B., Xiaojing, Z., Jing, B., & Hongxing, Q. (2022). Isolation, Identification and Stress Resistance Analysis of Bacillus coagulans from Chickens. China Animal Husbandry and Veterinary Medicine, 49(11), 4187–4196. https://doi.org/10.16431/J.CNKI.1671-7236.2022.11.009
Yilmaz, M., Soran, H., & Beyatli, Y. (2006). Antimicrobial activities of some Bacillus spp. strains isolated from the soil. Microbiological Research, 161(2), 127–131. https://doi.org/10.1016/J.MICRES.2005.07.001
Zhao, X., Höfte, M., Spanoghe, P., Rajkovic, A., & Uyttendaele, M. (2024). Biofilm-forming Ability of Bacillus thuringiensis Strains from Biopesticides on Polystyrene and their Attachment on Spinach. Journal of Food Protection, 87(8), 100321. https://doi.org/10.1016/J.JFP.2024.100321
Zhou, Y., Zeng, Z., Xu, Y., Ying, J., Wang, B., Majeed, M., Majeed, S., Pande, A., & Li, W. (2020). Application of Bacillus coagulans in Animal Husbandry and Its Underlying Mechanisms. Animals , 10(3), 454. https://doi.org/10.3390/ANI10030454
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Rodrigo Saavedra, Ruth Vasquez, Lita Sorroza
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license