Polinización por insectos: Servicio ecosistémico, factores que la afectan, importancia, valoración económica, conservación y restauración y desafíos futuros

Authors

  • Pedro S. Castillo-Carrillo Universidad Nacional de Tumbes, Escuela Profesional de Agronomía. Tumbes, Perú.
  • Luis Alberto Bermejo Requena Universidad Nacional de Tumbes, Escuela Profesional de Ingeniería Forestal y Medio Ambiente. Tumbes, Perú.

DOI:

https://doi.org/10.57188/manglar.2025.046

Keywords:

abejas, biodiversidad, polinización, servicio ecosistémico

Abstract

La polinización por insectos representa un servicio ecosistémico esencial para la producción agrícola y la conservación de la biodiversidad vegetal. Este proceso natural, mediado principalmente por abejas y otros insectos, influye directamente en la calidad, cantidad y estabilidad de numerosos cultivos. Sin embargo, múltiples factores como la pérdida de hábitat, el uso de pesticidas, el cambio climático y la contaminación del aire amenazan su eficacia y sostenibilidad. A pesar de su alto valor ecológico y económico, los esfuerzos por conservar y restaurar este servicio enfrentan importantes desafíos, incluyendo la escasa valoración económica de los polinizadores silvestres y la limitada integración de estrategias de conservación en políticas agrarias. Este artículo propone fortalecer la investigación sobre polinizadores no tradicionales, especialmente de hábitos nocturnos, cuya contribución a la polinización ha sido históricamente subestimada. Asimismo, se recomienda impulsar estudios que evalúen el efecto de infraestructuras emergentes como los parques solares en la biodiversidad de polinizadores. Un enfoque interdisciplinario, que integre ecología, economía, agricultura y planificación territorial, será clave para diseñar sistemas agrícolas resilientes, sostenibles y compatibles con la conservación de la biodiversidad. Estudios futuros podrían centrarse en el diseño experimental de paisajes multifuncionales que optimicen simultáneamente la producción agrícola y la salud de las comunidades de polinizadores.

Downloads

Download data is not yet available.

References

Abrol, D. P. (1998). Foraging Ecology and Behaviour of the Alfalfa Pollinating Bee Species Megachile nana (Hymenoptera: Megachilidae). Entomologia generalis, 22(3-4), 233- 237.

Allbrecht, M., Schmid,B., Hautier, &., Mueller, C. B. (2012). Diverse pollinator communities enhance plant reproductive success. Proc. R. Soc. B. Biol. Sci., 279, 4845-4852.

Alves, L. H. S., Cassino, P. C. R., & Prezoto, F. (2015). Effects of abiotic factors on the foraging activity of Apis mellifera Linnaeus, 1758 in inflorescences of Vernonia polyanthes Less (Asteraceae). Acta Scientiarum Animal Sciences, 37, 405-409.

Allen-Wardell, G., Bernhardt. P., Bitner, R., Burquez, A., Buchmann. S., et al. (1998). The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Cons Biol, 12, 8–17.

Allsopp, M. H., de Lange, W. J. & Veldtman, R. (2008). Valuing Insect Pollination Services with Cost of Replacement. PLoS ONE, 3(9), e3128. https://doi.org/10.1371/journal.pone.0003128.

Allsopp, M. H. & Cherry, M. (2004). An assessment of the impact on the bee and agricultural industries in the Western Cape of the clearing of certain Eucalyptus species using questionnaire survey data. Pretoria: National Government of the Republic of South Africa, Department of Water Affairs, Internal Final Report. 58 pp.

Amato, B., & Petit, S. (2025). Influence of fragment and roadside vegetation on canola (Brassica napus). and faba bean (Vicia faba). pollination in South Australia. Agriculture, Ecosystems & Environment, 382(109481), 109481. https://doi.org/10.1016/j.agee.2025.109481

Antiqueira, P. A. P., de Omena, P. M., Gonçalves-Souza, T. et al. (2020). Precipitation and predation risk alter the diversity and behavior of pollinators and reduce plant fitness. Oecologia, 192, 745–753. https://doi.org/10.1007/s00442-020-04612-0

Araujo, P., de Araujo, F. F., Vidal, D. M., Mota, T., & Schlindwein, C. (2024). The role of visual and olfactory floral cues in twilight foraging by Ptiloglossa and Xylocopa bees. Behavioral Ecology and Sociobiology, 78(2), article id 25. https://doi.org/10.1007/s00265-024-03.

Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Armstrong, A., Ostle, N. J., & Whitaker, J. (2016). Solar park microclimate and vegetation management effects on grassland carbon cycling. Environmental Research Letters, 11(7), 074016. https://doi.org/10. 1088/1748-9326/11/7/074016.

Baird, E. (2020). Obstacle avoidance in bumblebees is robust to changes in light intensity. Animal cognition, 23, 1081-1086.

Baird, E., Tichit, P., & Guiraud, M. (2020). The neuroecology of bee flight behaviours. Current Opinion in Insect Science 42, 8-13.

Baldock, K. C. R., Goddard, M. A., & Hicks, D. M., et al. (2019). A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol., 3, 363–373. https://doi.org/10.1038/s41559-018-0769-y

Bale, J. S., Masters. G. J., Hodkinson. I. D., Awmack, C. et al (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8, 1–16. https://doi.org/10.1046/j.1365-2486.2002.00451

Balvanera, P., Uriarte, M., Almeida-Leñero, L., Altesor, A., DeClerck, F., Gardner, T.; Hall, J.; Lara, A.; Laterra, P.; Peña-Claros, M.; et al. (2012). Ecosystem services research in Latin America: The state of the art. Ecosyst. Serv., 2, 56–70.

Bartholomée, O., & Lavorel, S. (2019). Disentangling the diversity of definitions for the pollination ecosystem service and associated estimation methods. Ecological Indicators, 107, 105576.

Bartomeus al. (2014). Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ2, e328. https://doi.org/10.7717/peerj.328

Beekman, M., Sumpter, D. J. T., Seraphides, N., & Ratnieks, F. L. W. (2004). Comparing foraging behaviour of small and large honey-bee colonies by decoding waggle dances made by foragers. Functional Ecology, 18(6), 829–835.

Beekman, M., & Ratnieks, F. L. W. (2000). Long-range foraging by the honey-bee, Apis mellifera L. Functional Ecology, 14(4), 490–496.

Berry, R. P., Wcislo, W. T., & Warrant, E. J. (2011). Ocellar adaptations for dim light vision in a nocturnal bee. Journal of Experimental Biology 214, 1283-1293.

Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. (2006). Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. Roy. Soc. London (Biol.)., 273, 1715–1727.

Blaydes, H., Potts, S. G., Whyatt, J. D., & Armstrong, A. (2024). On-site floral resources and surrounding landscape characteristics impact pollinator biodiversity at solar parks. Ecological Solutions and Evidence, 5, e12307. https://doi.org/10.1002/2688- 8319.12307

Blitzer, E. J., Gibbs, J., Park, M. G. & Danforth, B. N. (2016). Pollination services for apple are dependent on diverse wild bee communities. Agric Ecosyst Environ, 221, 1–7.

Bosch, J., Osorio-Canadas, S., Sgolastra, F. & Vicens, N. (2021). Use of a managed solitary bee to pollinate almonds: Population sustainability and increased fruit set. Insects, 12(1), 56. https://doi.org/10.3390/insects12010056

BRE. (2014a). BRE National Solar Centre Biodiversity Guidance for Solar Developments. https://www.bre.co.uk/filelibrary/pdf/Brochures/NSC-Biodiversity- Guidance.pdf

BRE. (2014b). Agricultural Good Practice Guidance for Solar Farms. https://files.bregroup.com/solar/NSC_-Guid_Agricultural-good-practicefor-SFs_0914.pdf

Brittain, C. A., Vighi, M., Bommarco, R., Settele, J. & Potts, S. G. (2010). Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl. Ecol., 11, 106–115.

Brosi, B. J. (2016). Pollinator specialization: from the individual to the community. New Phytol., 210, 1190–1194 https://doi.org/10.1111/nph.13951

Buchmann, S. L. & Nabhan, G. P. (1996). The Forgotten Pollinators. Washington DC: Island Press. 312 pp.

Burd, M., & Allen, T. F. H. (1988). Sexual allocation strategy in wind-pollinated plants. Evolution, 42, 403–407. https://doi.org/10.2307/2409245

Burgett, M., Rucker, R. R., & Thurman, W. N. (2004). Economics and honey bee pollination markets. Am Bee J, 144, 269–271.

Burkle, L. A., Marlin. J. C. & Knight. T. M. (2013). Plant–pollinator interaction over 120 years: loss of species, co-occurrence, and function. Science, 339, 1611–1615. https://doi.org/10.1126/science.1232728

Caballero Méndez, L. C., Salazar Ríos, D., Chica Builes, J. F., & Franco-Montoya, L. N. (2024). Native stingless bees, their social and ecosystem roles – a review. Veterinarska Stanica, 56(4), 493–505. https://doi.org/10.46419/vs.56.4.10

Cáceres, D. M., Tapella, E., Quétier, F. & Díaz, S. (2015). The social value of biodiversity and ecosystem services from the perspectives of different social actors. Ecol. Soc., 20, 62.

Cao, Guo-Xing; Li, Rui Ting; Li, Lin; Zeng, Hong & Wang, Jingâ Yan (2020). Gender specialization and factors affecting fruit set of the wind- pollinated heterodichogamous Juglans regia . Plant Species Biology, 1442-1984, 12268. https://doi.org/10.1111/1442-1984.12268

Campbell, A. J., Biesmeijer, J. C., Varma, V. & Wäckers, F. L. (2012). Realising multiple ecosystem services based on the response of three beneficial insect groups to floral traits and trait diversity. Basic Appl. Ecol., 13, 363–370.

Carvalho, C., Oliveira, A., Caeiro, E., Miralto, O., Parrinha, M., Sampaio, A., Silva,C., Mira, A., & Salgueiro, P. A. (2022). Insect pollination services in actively and spontaneously restored quarries converge differently to natural reference ecosystem. Journal of Environmental Management, 318, 115450. https://doi.org/10.1016/j.jenvman.2022.115450

Chang, J. J., Crall, J. D., & Combes, S. A. (2016). Wind alters landing dynamics in bumblebees. Journal of Experimental Biology, 219, 2819-2822.

Christmann, S. (2019). Do we realize the full impact of pollinator loss on other ecosystem services and the challenges for any restoration in terrestrial areas? Restor. Ecol., 27, 720-725.

Clarke, D., & Robert, D. (2018). Predictive modelling of honey bee foraging activity using local weather conditions. Apidologie, 49, 386-396.

Combes, S. A. & Dudley, R. (2009). Turbulence-driven instabilities limit insect flight performance. Proceedings of the National Academy of Sciences, 106, 9105- 9108.

Committee on Climate Change. (2019). Net zero technical report. https://www.theccc.org.uk/publication/net-zero-technical-report/

Contrera, F. A. L., Imperatriz-Fonseca, V. L. & Nieh, J. C. (2004). Temporal and climatological influences on flight activity in the stingless bee Trigona hyalinata (Apidae, Meliponini). Revista Tecnologia e Ambiente, 10, 35-43.

Cook, D. C., Thomas, M. B., Cunningham, S. A., Anderson, D. L. & De Barro, P. J. (2007). Predicting the economic impact of an invasive species on an ecosystem service. Ecol Appl, 17, 1832–1840.

Corbet, S. A. (1990). Pollination and the weather. Israel Journal of Plant Sciences, 39, 13- 30.

Cordeiro, G. D., Pinheiro, M., Dötterl, S., & Alves-dos-Santos, I. (2017). Pollination of Campomanesia phaea (Myrtaceae). by night-active bees: a new nocturnal pollination system mediated by floral scent. Journal of Plant Biology, 19(2), 132-139. https://doi.org/10.1111/plb.12520

Cusser, S. & Goodell, K. (2013).Diversity and distribution of floral resources influence the restoration of plant-pollinator networks on a reclaimed strip mine. Restor. Ecol., 21, 713-721, https://doi.org/10.1111/rec.12003

DESNZ. (2023). Renewable Energy Planning Database: Quarterly extract. https://www.gov.uk/government/publications/renewable-energy-planning-database-monthly-extract

De Oliveira, F. L., Dias, V. H. P., Da Costa, E. M., Filgueira, M. A. & Sobrinho, J. E. (2012). Influência das variações ambientales na atividade de vôo das abelhas jandairas Melipona subnitida Ducke (Meliponinae). Revista Ciência Agronômica, 43, 598-603.

DeVetter, L. W., Chabert, S., Milbrath, M. O., Mallinger, R. E., Walters, J., Isaacs, R., Galinato, S. P., Kogan, C., Brouwer, K., Melathopoulos, A., & Eeraerts, M. (2022). Toward evidence-based decision support systems to optimize pollination and yields in highbush blueberry. Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.1006201

Di Mauro, D., Dietz, T., & Rockwood, L. (2007). Determining the effect of urbanization on generalist butterfly species diversity in butterfly gardens. Urban Ecosyst. 10, 427–439. https://doi.org/10.1007/s11252-007-0039-2

Drummond, F. A., & Hoshide, A. K. (2024). An economic cost/benefit tool to assess bee pollinator conservation, pollination strategies, and sustainable policies: A lowbush blueberry case study. Sustainability, 16(8), 3242. https://doi.org/10.3390/su16083242

Duque, L., & Steffan-Dewenter, I. (2024). Air pollution: a threat to insect pollination. Frontiers in Ecology and the Environment, 22(3), e2701. https://doi.org/10.1002/fee.2701

El Hassani, A. K., Dacher, M., Gauthier, M., & Armengaud, C. (2005). Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol., Biochem. Behav., 82, 30–39.

Engel, M. S., & Rasmussen, C. (2017). Diversity and Distribution of Stingless Bees. In S. M. Sakagami, R. Zucchi, & D. W. Roubik (Eds.), Stingless Bees Biology, Management and Conservation (pp. 9-34). Springer.

Favarin, S., Fantinato, E. & Buffa, G. (2022). Pollinator distribution in patches of suitable habitat depends more on patch isolation than on floral abundance, Flora, 296, 152165, https://doi.org/doi.org/10.1016/j.flora.2022.152165

Fenske, M. P., Hewett Hazelton, K. D., Hempton, A. K., Shim, J. S., Yamamoto, B. M., Riffell, J. A. et al. (2015). Circadian clock gene late elongated hypocotyl directly regulates the timing of floral scent emission in Petunia. Proc. Natl Acad. Sci., 112, 9775–9780. https://doi.org/10.1073/pnas.1422875112

Feketéné Ferenczi, A., Szúcs, I., Bauerné Gáthy, A. (2023). Evaluation of the Pollination Ecosystem Service of the Honey Bee (Apis mellifera). Based on a Beekeeping Model in Hungary. Sustainability, 15, 9906. https://doi.org/10.3390/su15139906

Fidalgo, A. D. O., & Kleinert, A. D. M. P. (2007). Foraging behavior of Melipona rufiventris Lepeletier (Apinae; Meliponini). in Ubatuba, SP, Brazil. Brazilian Journal of Biology 67, 133-140.

Forrest, J. R. K. (2015). Plant—pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations? Oikos 124, 4–13. https://doi.org/10.1111/oik.01386

Forup, M. L., Henson, K. S. E., Craze, P. G. & Memmott, J. (2008). The restoration of ecological interactions: plant-pollinator networks on ancient and restored heathlands. J. Appl. Ecol., 45, 742-752, https://doi.org/10.1111/j.1365-2664.2007.01390

Fox, J. F. (1993). Size and sex allocation in monoecious woody plants. Oecologia, 94, 110–113. https://doi.org/10.1007/BF00317310

Frederiksen, R., Wcislo, W. T., & Warrant, E. J. (2008). Visual reliability and information rate in the retina of a nocturnal bee. Current Biology, 18(4), 349-353. https://doi.org/10.1016/j.cub.2008.01.057

Free, J. B. (1993). Insect pollination of crops. London: Academic Press.

Friedman, J., & Barrett, S. C. (2011). Genetic and environmental control of temporal and size-dependent sex allocation in a wind-pollinated plant. Evolution, 65, 2061–2074. https://doi.org/10.2307/41240798

Frisch, von K. (1967). The Dance Language and Orientation of Bees. Harvard University Press, Cambridge, MA.

Fukase, J. (2016). Increased pollinator activity in urban gardens with more native flora. Appl. Ecol. Environ. Res. 14, 297–310. https://doi.org/10.15666/aeer/1401_297310

Gagic, V., Marcora, A., & Howie, L. (2019). Additive and interactive effects of pollination and biological pest control on crop yield. J. Appl. Ecol., 56, 2528–2535.

Gaibor, J. (2018). Poblaciones y porcentajes de polinización de Forcipomyia spp. en el cultivo de cacao, en época lluviosa en la Zona de San José del Tambo (Tesis de pregrado). Babahoyo, Ecuador: Universidad Técnica de Babahoyo. Facultad de Ciencias Agropecuarias.

Gallai, N., Salles, J. M., Settele, J., & Vaissière, B. E. (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68(3), 810-821. https://doi.org/10.1016/j.ecolecon.2008.06.014.

Garratt, M. P. D., Senapathi, D., Coston, D. J., Mortimer, S. R., & Potts, S. G. (2017). The benefits of hedgerows for pollinators and natural enemies depends on hedge quality and landscape context. Agriculture, Ecosystems & Environment, 247, 363–370. https://doi.org/10.1016/j.agee.2017.06.048

Glendinning, D.R. (1972). Natural pollination of cocoa. New Phytologist, 71(4), 719-729. https://doi.org/10.1111/j.1469-8137.1972.tb01284.x

Gallai, N., Salles, J. M., Settele, J. & Vaissiere, B. E., (2009). Economic valuation of the vulnerability of world agriculture confronted to pollinator decline. Ecol. Econ., 68(3), 810–821.

Garibaldi, L. A., Pérez-Méndez, N., Garratt, M. P. D., Gemmill-Herren, B., Miguez, F. E., & Dicks, L. V. (2019). Policies for ecological intensification of crop production. Trends in Ecology & Evolution, 34(4), 282–286.

Garibaldi, L. A., Andersson, G. K. S., Requier, F., Fijen, T. P. M., Hipólito, J., Kleijn, D. Pérez-Méndez, N., & Rollin, O. (2018). Complementarity and synergisms among ecosystem services supporting crop yield. Glob. Food Secur. 17, 38–47.

Garibaldi, L. A., Requier, F., Rollin, O., & Andersson, G. K. (2017). Towards an integrated species and habitat management of crop pollination. Current Opinion in Insect Science, 21, 105–114.

Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., Kremen, C., Carvalheiro, L. G., Harder, L. D., Afik, O., Bartomeus, I., Benjamin, F., Boreux, V., Cariveau, D., Chacoff, N. P., Dudenhöffer, J. H., Freitas, B. M., Ghazoul, J., Greenleaf, S. & Klein, A. M. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 339, 1608–1611.

Gill, R. A. (1985). Biological control of Echium species. Industries Assistance Commission, report No. 371. Canberra: Australian Government Printer.

Gobatto, A. L., & Knoll, F. (2013). Influence of seasonal changes in daily activity and annual life cycle of Geotrigona mombuca (Hymenoptera, Apidae). in a Cerrado habitat, São Paulo, Brazil. Iheringia. Série Zoologia, 103, 367-373.

González, V. H., Herbison, N., Robles–Pérez, G., Panganiban, T., Haefner, L., Tscheulin, T., Petanidou, T., & Hranitz, J. (2024). Bees display limited acclimation capacity for heat tolerance. Biology Open: https://doi.org/10.1242/bio.060179

Goodwin, R. M., Cox, H. M., Taylor, M. A., Evans, L. J. & Mc Brydie, H. M. (2011). Number of honey bee visits required to fully pollinate white clover (Trifolium repens). seed crops in Canterbury, New Zealand. New Zealand Journal of Crop and Horticultural Science, 39, 7-19.

Gouw, M. S., & Gimenes, M. (2013). Differences of the daily flight activity rhythm in two Neotropical stingless bees (Hymenoptera, Apidae). Sociobiology, 60, 183-189.

Greco, C. F. & Kevan, P. G. (1995). Patch choice in the anthophilous ambush predator Phymata americana: Improvement by switching hunting sites as part of the initial choice. Can. J. Zool. Rev. Can. Zool. 73, 1912–1917.

Greenleaf, S. S., Williams, N. M., Winfree, R., & Kremen, C. (2007). Bee foraging ranges and their relationship to body size. Oecologia, 153(3), 589–596.

Greiner, B., Cronin, T. W., Ribi, W. A., Wcislo, W. T., & Warrant, E. J. (2007). Anatomical and physiological evidence for polarisation vision in the nocturnal bee Megalopta genalis. Journal of Comparative Physiology, 193, 591-600.

Guibu, L. S., Imperatriz-Fonseca, V. L. (1984). Atividade externa de Melipona quadrifasciata Lepeletier (Hymenoptera, Apidae, Meliponinae). Ciência e Cultura, 36, 623.

Guimarães, B. M. da C., Arista, M., Oliveira, P. E., & Nogueira-Ferreira, F. H. (2024). What should we teach to promote bee conservation awareness? Insights from the perception of Brazilian middle school students. Neotropical Entomology, 54(1). https://doi.org/10.1007/s13744-024-01241-7

Hanley, N., Breeze, T. D., Ellis, C., & Goulson, D. (2015). Measuring the economic value of pollination services: Principles, evidence and knowledge gaps. Ecosystem Services, 14, 124–132. https://doi.org/10.1016/j.ecoser.2014.09.013

Hayes, J. J.-M., Bell, N. C., Best, L. R., Bruslind, S. R., Johnson, D. O., Mead, M. E., Spofford, T. S., & Langellotto, G. A. (2025). Pacific Northwest native plants and native cultivars, part I: pollinator visitation. Environmental Entomology. https://doi.org/10.1093/ee/nvae126

Heard, T. A. & Hendrikz, J. K. (1993). Factors influencing flight activity of colonies of the stingless bee Trigona carbonaria (Hymenoptera, Apidae). Australian Journal of Zoology, 41, 343-353.

Hedström, I., Harris, J. & Fergus, K. (2006). Euglossine bees as potential bio-indicators of cofee farms: Does forest access, on a seasonal basis, afect abundance? Revista de Biología Tropical, 54, 1188-1195.

Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L. & Totland, O. (2009). How does climate warming affect plant–pollinator interactions? Ecol Lett. https://doi.org/10.1111/j.1461-0248.2008.01269

Hegland, S. J., Grytnes, J. A. & Totland, O. (2009). The relative importance of positive and negative interactions for pollinator attraction in a plant community. Ecol. Res., 24, 929–936 https://doi.org/10.1007/s11284-008-0572-3

Heinrich, B. (1993). The hot-blooded insects: Strategies and mechanisms of thermoregulation. Harvard University Press. https://doi.org/10.4159/harvard.9780674491604

Herrera, C. M., & Medrano, M. (2017). Pollination consequences of simulated intrafloral microbial warming in an early-blooming herb. Flora, 232, 142–149. https://doi.org/10.1016/j.flora.2016.10.003

Hilário, S. D., Imperatriz-Fonseca, V. L., & Kleinert, A. (2000). Flight activity and colony strength in the stingless bee Melipona bicolor bicolor (Apidae, Meliponinae). Revista Brasileira de Biologia, 60, 299-306.

Hilário, S., Imperatriz-Fonseca, V. L., & Kleinert, A. M. P. (2001). Responses to climatic factors by foragers of Plebeia pugnax Moure (in litt.). (Apidae, Meliponinae). Revista Brasileira de Biologia, 61(2), 191-196. https://doi.org/10.1590/S0034-71082001000200005

Hilário, S. D., de Fátima Ribeiro, M., & Imperatriz-Fonseca, V. L. (2007). Efeito do vento sobre a atividade de vôo de Plebeia remota (Holmberg, 1903). (Apidae, Meliponini). Biota Neotropica, 7, 225-232.

Holzschuh, A., Dudenhöffer, J. H., & Tscharntke, T. (2012). Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biol Conserv, 153, 101–107.

Huang, H., Tu, C., & D’Odorico, P. (2021). Ecosystem complexity enhances the resilience of plant-pollinator systems. One Earth (Cambridge, Mass.), 4(9), 1286–1296. https://doi.org/10.1016/j.oneear.2021.08.008

IPBES, (2016). Summary for policy makers of the assessment report of the Intergovernamental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production., UNEP/GRID Europe. https://doi.org/10.1007/s00442–010-1809–8

Isaacs, R., Williams, N., Ellis, J., & Pitts-Singer, T. L. (2017). Integrated Crop Pollination: Combining Strategies to Ensure Stable and Sustainable Yields of Pollination-Dependent Crops. Basic and Applied Ecology, 18, 1-12. https://doi.org/10.1016/j.baae.2016.09.006

Iwama, S. (1977). A influência dos fatores climáticos na atividade externa de Tetragonisca angustula (Apidae, Meliponinae). Bol. Zool., 2, 189-201.

Jeavons, E., Le Lann, C. & van Baaren, J. (2023). Interactions between natural enemies and pollinators: Combining ecological theory with agroecological management. Entomol. Gen., 43, 243–259.

Jeavons, E., van Baaren, J. & Le Lann, C. (2020). Resource partitioning among a pollinator guild: A case study of monospecific flower crops under high honeybee pressure. Acta Oecologica, 104, 103527.

Kaluza, B. F. (2017). Impacts of landscape resource diversity and availability on bee foraging and fitness. Dissertation, Universitätsbibliothek der Leuphana Universität Lüneburg.

Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B., & Caflisch, A. (2010). The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecology Letters, 13(4), 442–452. https://doi.org/10.1111/j.1461-0248.2009.01437.x

Kaufmann, T. (1975). Ecology and Behavior of Cocoa Pollinating Ceratopogonidae in Ghana, W. Africa, Environmental Entomology, 4(2), 347–351.

Kearns,C. A., Inouye,D. W., & Waser, N. M. (1998). Endangered mutualisms: the conservation of plant-pollinator interactions. Annu. Rev. Ecol. Syst., 29, 83-112.

Kelber, A., Warrant, E. J., Pfaff, M., Wallén, R., Theobald, J. C., Wcislo, W. T., & Raguso, R. A. (2006). Light intensity limits foraging activity in nocturnal and crepuscular bees. Behavioral Ecology, 17(1), 63-72. https://doi.org/10.1093/beheco/arj001

Kerfoot, W. B. (1967). The lunar periodicity of Sphecodogastra texana, a nocturnal bee (Hymenoptera: Halictidae). Animal Behaviour, 15, 479-486.

Kevan, P. G, Hussein, M.Y., Hussey, N. & Wahid, M.B. (1986). Modelling the use of Elaeidobius kamerunicus for pollination of oil palm. The Planter., 62, 89-99.

Kevan, P.G. (1999). Pollinators as bioindicators of the state of the environment: species, activity and diversity. Agric. Ecosyst. Environ., 74, 373–393.

Khalifa, S. A. M., Elshafiey, E. H., Shetaia, A. A., El-Wahed, A. A. A., Algethami, A. F., Musharraf, S. G., AlAjmi, M. F., Zhao, C., Masry, S. H. D., Abdel-Daim, M. M., Halabi, M. F., Kai, G., Al Naggar, Y., Bishr, M., Diab, M. A. M., & El-Seedi, H. R. (2021). Overview of bee pollination and its economic value for crop production. Insects, 12(8), 688. https://doi.org/10.3390/insects12080688

Kingazi, N., Temu, R.-A., Sirima, A., & Jonsson, M. (2024). Pollination knowledge among local farmers in northern Tanzania and the role of traditional agroforestry practices in promoting pollinator forage plants. Environmental and Sustainability Indicators, 23, 100435. https://doi.org/10.1016/j.indic.2024.100435

Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., et al.(2007). Importance of pollinators in changing landscapes for world crops. Proc Biol Sci., 7(1608), 303–313.

Kleinert-Giovannini, A. (1982). Influence of climatic factors on flight activity of Plebeia emerina Friese (Hymenoptera, Apidae, Meliponinae). in winter. Revista Brasileira de Entomologia, 26, 13.

Knop, E., Gerpe, C., Ryser, R., Hofmann, F., Menz, M. H. M., Trösch, S. et al. (2018). Rush hours in flower visitors over a day-night cycle. Insect Conserv. Divers 11, 267– 275 https://doi.org/10.1111/icad.12277

Koh, I., Lonsdorf, E. V., Artz, D. R., Pitts-Singer, T. L. & Ricketts, T. H. (2018). Ecology and economics of using native managed bees for almond pollination. J Econ Entomol., 111(1), 16–25.

Kremen, C., Williams, N. M., Aizen, M. A., Gemmill-Herren, B., Lebuhn, G., Minckley, R., packer, L., Potts, S. G., Roulston, T. A., Steffan-Dewenter, I., Vazquez, D. P., Winfree, R., Adams, L., Crone, E. E., Greenleaf, S. S., Keitt, T. H., Klein, A. M., Regetz, J., & Ricketts, T. H. (2007). Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land -use change. Ecol. Lett., 10, 299-314.

Labarca, M. V, & Narváez, Z. (2009). Identificación y fluctuación poblacional de insectos polinizadores en palma aceitera (Elaeis guineensis Jacquin). en el sur del lago de Maracaibo, estado Zulia, Venezuela. Revista de la Facultad de Agronomía, 26(3), 305-324.

Lautenbach, S., Seppelt, R., Liebscher, J., & Dormann, C. F. (2012). Spatial and temporal trends of global pollination benefit. PLoS ONE, 7(4), e35954. https://doi.org/10.1371/journal.pone.0035954

Laws, A. N. (2017). Climate change effects on predator–prey interactions. Curr Opin Insect 406(23), 28–34. https://doi.org/10.1016/j. cois.2017.06.010

LeCroy, K. A., Shew, H. W. & van Zandt, P. A. (2013). Pollen presence on nocturnal moths in the Ketona Dolomite glades of Bibb County, Alabama. Southern Lepidopterists' News, 35, 136–142.

Lindstrom, S. A. M., Herbertsson, L., Rundlof, M., Bommarco, R., & Smith, H. G. (2016). Experimental evidence that honeybees depress wild insect densities in a flowering crop. Proc. R. Soc. B Biol. Sci., 283, 20161641.

Liss, K. N., Mitchell, M. G. E., MacDonald, G. K., Mahajan, S. L., Méthot, J., Jacob, A. L., Maguire, D. Y., Metson, G. S., Ziter, C., Dancose, K., Martins, K., Terrado, M., & Bennett, E. M. (2013). Variability in ecosystem service measurement: a pollination service case study. Frontiers in Ecology and the Environment, 11(8), 414–422.

López, E. & Rojas, R. (1992). Artrópodos asociados a la floración del chirimoyo (Annona cherimolia Mill.). en la localidad de Quillota, Quinta Región, Chile. Acta Entomológica Chilena, 17, 101-106.

López, E., & Uquillas, C. (1997). Carpophilus hemipterus (Coleoptera: Nitidulidae). como agente polinizante de chirimoyo (Annona cherimolia Mill.). bajo condiciones controladas. Acta Entomológica Chilena, 21, 89-92.

Llodrà-Llabrés, J. & Cariñanos, P. (2022). Enhancing pollination ecosystem service in urban green areas: An opportunity for the conservation of pollinators, Urban Forestry & Urban Greening, 74, 127621. https://doi.org/10.1016/j.ufug.2022.127621

Lundin, O., Smith, H. G., Rundlöf, M. & Bommarco, R. (2013). When ecosystem services interact: crop pollination benefits depend on the level of pest control. Proc. R. Soc. B., 280, 2012224320122243. http://doi.org/10.1098/rspb.2012.2243

McGregor, S. (1976). Insect pollination of cultivated crop plants. Washington (DC): US Department of Agriculture, Agriculture Handbook 496.

McGregor, S. E., (2002). Insect Pollination of Cultivated Crop Plants. Agriculture Research Service.

MacGregor, C. J., Pocock, M. J. O., Fox, R. & Evans, D. M. (2015). Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review. Ecol. Entomol., 40, 187–198 https://doi.org/10.1111/een.12174

MacGregor, C. J., & Scott-Brown, A. S. (2020). Nocturnal pollination: an overlooked ecosystem service vulnerable to environmental change. Emerging Topics in Life Sciences, 4(1), 19–32. https://doi.org/10.1042/etls20190134

Maclnnis, G. & Forrest, J. R. K. (2019). Pollination by wild bees yields larger strawberries than pollination by honey bees. J Appl Ecol., 56(4), 824–832.

Majewska, A. A. & Altizer, S. (2020). Planting gardens to support insect pollinators. Conserv. Biol. 34, 15–25. https://doi.org/10.1111/cobi.13271

Mandelik, Y., & Roll, U. (2009). Diversity patterns of wild bees in almond orchards and their surrounding landscape. Isr J Plant Sci., 57(3), 185–191.

Mallinger, R. E. & Gratton, C. (2015). Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pollinator-dependent crop. J Appl Ecol., 52(2), 323–330.

Memmott, J. (1999). The structure of a plant-pollinator food web. Ecology Letters, 2(5), 276–280. https://doi.org/10.1046/j.1461-0248.1999.00087.x

Menz, M. H. M., Phillips, R. D., Winfree, R., Kremen, C., Aizen, M. A., Johnson, S. D., & Dixon, K. W. (2011). Reconnecting plants and pollinators: challenges in the restoration of pollination mutualisms trends. Plant Sci., 16, 4-12, https://doi.org/10.1016/j.tplants.2010.09.006

Michener, C. D. (1974). The social behavior of the bees: a comparative study (Vol. 73, No. 87379). Harvard University Press.

Miñarro, M., García, D., & Martínez, R. (2018). Los insectos polinizadores en la agricultura: importancia y gestión de su biodiversidad: Ecosistemas, 27(2), 81-90. https://doi.org/10.7818/ECOS.1394

Miyake, T., & Yahara, T. (1998). Why does the flower of Lonicera japonica open at dusk? Can. J. Bot., 76, 1806–1811 https://doi.org/10.1139/b98-119

Morse, R. A. & Calderone, N. W. (2000). The value of honey bees as pollinators of U.S. crops in 2000. Bee Cult, 128, 1–15.

Nabors, A., Hung, K. L. J., Corkidi, L., et al. (2022). California native perennials attract greater native pollinator abundance and diversity than nonnative, commercially available ornamentals in Southern California. Environ. Entomol. 51, 836–847. https://doi.org/10.1093/ee/nvac046

Nicolson, S. & Human, H. (2013). Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus, Asteraceae). Apidologie, 44, 144–152. https://doi.org/10.1007/s13592-012-0166-5

Nicholls, E., & Hempel de Ibarra, N. (2017). Assessment of pollen rewards by foraging bees. Functional Ecology, 31, 76–87.

Nieto, A., Roberts, S. P. M., Kemp, J., Rasmont, P., Kuhlmann, M., García Criado, M., et al. (2014). European Red List of bees. Luxembourg: Publication Office of the European Union.

Norgate, M., Boyd-Gerny, S., Simonov, V., Rosa, M. G. P., Heard, T. A. & Dyer, A. G. (2010). Ambient temperature influences Australian native stingless bee (Trigona carbonaria). preference for warm nectar. PLoS One, 5, e12000. https://doi.org/10.1371/journal.pone.0012000

Ollerton, J., Winfree, R., & Tarrant, S., (2011). How many flowering plants are pollinated by animals? Oikos, 120, 321-326.

Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). 2008. Polinización, un servicio del ecosistema.

Osborne, J. L., Martin, A. P., Carreck, N. L., Swain, J. L., Knight, M. E., Goulson, D., Hale, R. J., & Sanderson, R. A. (2008). Bumblebee flight distances in relation to the forage landscape. The Journal of Animal Ecology, 77(2), 406–415.

Otieno, M., Woodcock, B. A., Wilby A., Vogiatzakis, I. N., Mauchline, A. L., Gikungu, M. W., & Potts, S. G. (2011). Local management and landscape drivers of pollination and biological control services in a Kenyan agro-ecosystem, Biological Conservation, 144, 2424-2431.

Pan, K., Marshall, L., Biesmeijer. K., & de Snoo G. R. (2022). The distributions of insect, wind and self pollination of plants in the Netherlands in relation to habitat types and 3D vegetation structure. J Pollinat Ecol., 31, 16–28.

Pantoja, A., Smith-Pardo, A., & García, Anamaría (2014). Principios y avances sobre polinización como servicio Ambiental para la agricultura sostenible en países de Latinoamérica y el Caribe. Edit FAO. 52 pp.

Pereboom, J. J. & Biesmeijer, J. C. (2003). Thermal constraints for stingless bee foragers: the importance of body size and coloration. Oecologia, 137, 42–50. https://doi.org/10.1111/brv.12366

Perianes-Rodriguez, A., Waltman, L., & van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195. https://doi.org/10.1016/j.joi.2016.10.006

Peris, D., Postigo-Mijarra, J. M., Peñalver, E., Pellicer, J., Labandeira, C. C., Peña-Kairath, C., Pérez-Lorenzo, I., Sauquet, H., Delclòs, X., & Barrón, E. (2024). The impact of thermogenesis on the origin of insect pollination. Nature Plants, 10(9), 1297–1303. https://doi.org/10.1038/s41477-024-01775-z

Pires, C. S. S., & Maués, M. M. (2020). Insect pollinators, major threats and mitigation measures. Neotrop Entomol, 49(4), 469–471.

Polatto, L. P., Chaud-Netto, J., & Alves-Junior, V. V. (2014). Influence of abiotic factors and floral resource availability on daily foraging activity of bees. Journal of Insect Behavior, 27, 593-612.

Porto, R. G., de Almeida, R. F., Cruz-Neto, O., Tabarelli, M., Viana, B. F., Peres, C. A., & Lopes, A. V. (2020). Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. Food Security, 12(6), 1425–1442. https://doi.org/10.1007/s12571-020-01043-w

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O. & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol., 25(6), 345–53.

Potts, S. G., Imperatriz-Fonseca, V. L., Ngo, H. T., Aizen, M. A., Biesmeijer, J. C., Breeze, T. D. & Viana, B. F. (2016). Safeguarding pollinators and their values to human well-being. Nature, 540(7632), 220-229. https://doi.org/10.1038/nature20588

Ramírez-Mejía, A. F., Lomáscolo, S., & Blendinger, P. G. (2023). Hummingbirds, honeybees, and wild insect pollinators affect yield and berry quality of blueberries depending on cultivar and farm's spatial context. Agriculture, Ecosystems & Environment, 342, 108229.

Randle-Boggis, R., White, P. C. L., Cruz, J., Parker, G., Montag, H., Scurlock, J., & Armstrong, A. (2020). Realising co-benefits for natural capital and ecosystem services from solar parks: A codeveloped, evidence-based approach. Renewable and Sustainable Energy Reviews, 125, 109775. https://doi.org/10.1016/j.rser.2020.109775

Rands, S. A. & Whitney, A. M. (2008). Floral temperature and optimal foraging: is heat a feasible floral reward for pollinators? PLoS One 3, e269. https://doi.org/10.1371/journal.pone.0002007

Reddy, P. R., Rashmi, T., & Verghese, A. (2015). Foraging activity of Indian honey bee Apis cerana, in relation to ambient climate variables under tropical conditions. J. Environ. Bio., l 36, 577–581.

Ribi, W. A., & Warrant, E. J. (2020). Spatial vision and visually guided behavior in Apidae. Insects, 11(3), 199. https://doi.org/10.3390/insects11030199

Richards, K. W. (1993). Non-Apis bees as crop pollinators. Rev Suisse Zool, 100, 807–822.

Richards, A. J. (2001). Does low biodiversity resulting from modern agricultural practice affect crop pollination and yield? Annals Bot, 88, 165–172.

Ricketts, T. H., Regetz, J., Steffan-Dewenter, I., Cunningham, S. A, Kremen, C., Bodgancki, A., Gemmil-Herren, B., Greenleaf, S. S., Klein, A. M., Mayfield, M. M., Morandin, L. A., Ochieng, A., Potts, S. G., & Viana, B. F., (2008). Landscape effects of on crop pollination services, are there general patterns? Ecol. Lett., 57(4), 157–176.

Robinson, W. S., Nowogrodzki, R., & Morse, R. A. (1989). The value of honey bees as pollinators of the United States crops. Am Bee J, 129, 477–487.

Rollin, O., & Garibaldi, L. A. (2019). Impacts of honeybee density on crop yield: A meta- analysis. The Journal of Applied Ecology, 56(5), 1152–1163.

Sanderson, R. A., Goffe, L. A., & Leifert, C. (2015). Time-series models to quantify short- term effects of meteorological conditions on bumblebee forager activity in agricultural landscapes. Agric For Entomol, 17, 270–276. https://doi.org/10.1111/afe.12102

Santibañez, F., Joseph, J., Abramson, G., Kuperman, M. N., Laguna, M. F., & Garibaldi, L. A. (2022). Designing crop pollination services: A spatially explicit agent-based model for real agricultural landscapes. Ecological Modelling, 472, 110094.

Shapira, T., Roth, T., Bar, A., Coll, M., & Mandelik, Y. (2023). Complex Effects of a Land-Use Gradient on Pollinators and Natural Enemies: Natural Habitats Mitigate the Effects of Aphid Infestation on Pollination Services. Insects, 14, 872. https://doi.org/10.3390/insects14110872

Shaw, R. F., Phillips, B. B., Doyle, T., Pell, J. K., Redhead, J. W., Savage, J., Woodcock, B. A., Bullock, J. M., & Osborne, J. L. (2020). Mass-flowering crops have a greater impact than semi-natural habitat on crop pollinators and pollen deposition. Landscape Ecology, 35(2), 513–527.

Schweiger, O., Biesmeijer, J.C., Bommarco, R., Hickler, T., Hulme, P. E., Klotz, S. et al (2010). Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Rev, 85, 777–795. https://doi.org/10.1111/j.1469- 185X.2010.00125.x

Sinu, P. A., Sibisha, V. C., Reshmi, M. V. N., Reshmi, K. S., Jasna, T. V., Aswathi, K., & Megha, P. P. (2017). Invasive ant (Anoplolepis gracilipes). disrupts pollination in pumpkin. Biol. Invasions, 19, 2599–2607.

Soares, K. O., Lima, M. V., Evangelista-Rodrigues, A., Silva, A. A. F., Silva, F. J. D. A., Lima, A. I. B., & Da Costa, C. R. G. (2019). Factors influencing the foraging behavior of Trigona spinipes (Apidae, Meliponinae). Biological Rhythm Research, 1-11.

Solar Energy UK. (2019). The Natural Capital Value of Solar. https://solarenergyuk.org/resource/natural-capital/

Somanathan, H., Kelber, A., Borges, R. M., Wallén, R., & Warrant, E. J. (2009). Visual ecology of Indian carpenter bees II: adaptations of eyes and ocelli to nocturnal and diurnal lifestyles. Journal of Comparative Physiology A, 195, 571-583.

Spaethe, J., & Briscoe, A. D. (2005). Molecular characterization and expression of the UV opsin in bumblebees: Three opsin genes in Bombus terrestris. Journal of Experimental Biology, 208(20), 3775-3787. https://doi.org/10.1242/jeb.01833

Steffan-Dewenter, I., & Kuhn, A. (2003). Honeybee foraging in differentially structured landscapes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270, 569–575.

Sung, I., Yamane, S., Lu, S. S., & Ho, K. K. (2011). Climatological Influences on the Flight Activity of Stingless Bees (Lepidotrigona hoozana). and Honeybees (Apis cerana). in Taiwan (Hymenoptera, Apidae). Sociobiology, 58, 835-850.

Sutter, L., & Albrecht, M. (2016). Synergistic interactions of ecosystem services: Florivorous pest control boosts crop yield increase through insect pollination. Proceedings. Biol. Sci. R. Soc., 283, 20152529.

Tanda, A. S. (2024). Insect pollination: An incredible natural service for food sustainability in agroecosystems-A review. Agricultural Research Journal, 61(5), 668–684. https://doi.org/10.5958/2395-146x.2024.00082.7

Trani, J. C. D., Ramírez, V. M., Añino, Y., & Barba, A. (2022). Environmental conditions and bee foraging on watermelon crops in Panama. Journal of Animal Behaviour and Biometeorology, 10(4), 1–9. https://doi.org/10.31893/jabb.22034

Theodorou, P., Albig, K., Radzeviˇciut ¯ e, ˙ R., Settele, J., Schweiger, O., Murray, T.E. & Paxton, R.J. (2017). The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. Funct. Ecol., 31, 838–847. https://doi.org/10.1111/1365-2435.12803

Thompson, H. M. (2001). Assessing the exposure and toxicity of pesticides to bumblebees (Bombus sp.). Apidologie, 32, 305–321.

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677.

Tinoco, B. A., Santillán, V. E., & Graham, C. H. (2018). Land use change has stronger effects on functional diversity than taxonomic diversity in tropical Andean hummingbirds. Ecology and Evolution, 8(6), 3478–3490.

Tomé, H. V. V., Martins, G. F., Lima, M. A. P., Campos, L. A. O., & Guedes, R. N. C. (2015). Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides. Ecotoxicology, 24(5), 1304-1316. https://doi.org/10.1007/s10646-015-1489-6

Torres-Ruiz, A., Jones, R. W., & Ayala-Barajas, R. (2013). Present and Potencial Use of Bees as Managed Pllinators in México. Southwestern Entomologist 38, 133- 147.

Tscharntke, T. (2021). Disrupting plant-pollinator systems endangers food security. One Earth (Cambridge, Mass.), 4(9), 1217–1219. https://doi.org/10.1016/j.oneear.2021.08.022

Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., & Whitbread, A. (2012). "Global Food Security, Biodiversity Conservation and the Future of Agricultural Intensification. Biological Conservation, 151(1), 53-59. https://doi.org/10.1016/j.biocon.2012.01.068

Tscharntke, T., Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahrig, L., Batáry, P., Bengtsson, J., Clough, Y., Crist, T. O., Dormann, C. F., Ewers, R. M., Fründ, J., Holt, R. D., Holzschuh, A., Klein, A. M., Kleijn, D., Kremen, C., Landis, D. A., Laurance, W., & Westphal, C. (2012). Landscape moderation of biodiversity patterns and processes— Eight hypotheses. Biological Reviews of the Cambridge Philosophical Society, 87(3), 661–685.

Turpie, J. K., Heydenrych. B. J., & Lamberth. S. J. (2003). Economic value of terrestrial and marine biodiversity in the Cape Floristic region: implications for defining effective and socially optimal strategies. Biol Cons, 112, 233–251.

Urbina, Á., Vicencio, V., Hormaza, J. I., Tobar, S., Aguado, L. O., Lora, J., García, C., Labarca, J., & Gratacós, E. (2021). Melanophthalma Motschulsky, 1866 (Coleoptera: Latridiidae). como visitante floral de Annona cherimola Miller, 1768 (Magnoliales: Annonaceae). en Chile central. Revista chilena de entomologia, 47(2), 305–310. https://doi.org/10.35249/rche.47.2.21.16

van der Putten, W.H., Macel, M. & Visser, M.E. (2010). Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Phil Trans R Soc B, 365, 2025–2034. https://doi.org/10.1098/rstb.2010.0037

van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3

Vergara, H. C., & Badano, E. I. (2009). Pollinator diversity increases fruit production in Mexican cofee plantations: he importance of rustic management systems. Agriculture, Ecosystems and Environment, 129, 117-123.

Vicens, N., & Bosch, J. (2000). Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environmental Entomology, 29, 413-420.

Warrant, E. J., Kelber, A., Wallén, R., & Wcislo, W. T. (2006). Ocellar optics in nocturnal and diurnal bees and wasps. Arthropod structure & development, 35, 293- 305.

Warrant, E. J. (2008). Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps. Journal of Experimental Biology, 211, 1737-1746.

Whitney, H. M., Dyer, A., Chittka, L., Rands, S. A., & Glover, B. J. (2008). The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Naturwissenschaften, 95, 845–850. https://doi.org/10.1007/s0011 4-008-0393-9

Willmer, P. G., & Stone, G. N. (2004). Behavioral, ecological, and physiological determinants of the activity patterns of bees. Advances in the Study of Behavior, 34, 347-466.

Willmer, P. (2011). Pollination and Floral Ecology. Princeton University Press. Williams, I.H. (1996). Aspects of bee diversity and crop pollination in the European Union. In: Matheson A, Buchmann SL, O'Toole C, Westrich P, Williams IH, editors. The Conservation of Bees. New York: Academic Press. pp. 63–80.

Winder, J. A. (1977). Field observations on Ceratopogonidae and other Diptera: Nematocera associated with cocoa flowers in Brazil. Bulletin of Entomological Research, 67(1), 57-63. https://doi.org/10.1017/S0007485300010890

Winfree, R., Gross, B. J., & Kremen, C. (2011). Valuing pollination services to agriculture. Ecol. Econ., 71, 80–88.

Yocgo, R. E. E., Hitimana, I., Hakizimana, M., & Birachi, E. A. (2023). Insect pollinators can unlock an annual monetary value of more than US $100 million from crop production in Rwanda. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-46936-w

Zariman, N. A., Omar, N. A., & Huda, A. N. (2022). Plant Attractants and Rewards for Pollinators: Their Significant to Successful Crop Pollination. Int. J. Life Sci. Biotechnol., 5, 270–293.

Downloads

Published

2025-09-30

How to Cite

Castillo-Carrillo, P. S., & Bermejo Requena, L. A. (2025). Polinización por insectos: Servicio ecosistémico, factores que la afectan, importancia, valoración económica, conservación y restauración y desafíos futuros. Manglar, 22(3), 445-464. https://doi.org/10.57188/manglar.2025.046

Most read articles by the same author(s)

1 2 > >>