La incorporación de hidroxiapatita mejora las propiedades físicas, mecánicas, térmicas e ignífugas de los envases biodegradables a base de residuos de arroz
Resumen
Los envases biodegradables son una alternativa sostenible a los envases convencionales de plástico, pero aún presentan desventajas insalvables. Se evaluó el efecto de la incorporación de hidroxiapatita (HAp) en las propiedades físicas, mecánicas, térmicas e ignífugas de los envases biodegradables a base de cáscara de arroz. La HAp se obtuvo a partir de residuos de la industria avícola. Los envases se obtuvieron por termo-prensado utilizando 10%, 15% y 20% de fibra de cascarilla de arroz (FCA) e incorporando 0%, 1%, 3% y 5% de HAp. Se observó una reducción del 118,84% en la absorción de agua en las bandejas con un 5% de HAp en comparación con el control. Las propiedades mecánicas mejoraron en las bandejas con 1% y 5% de HAp (6,05 y 8,85 kg-f de dureza y resistencia máxima a la tracción, respectivamente). El tiempo de incineración fue de 53,27 s en bandejas con 5% de HAp; mientras que, en las bandejas de control, el tiempo medio fue de 35,16 s, además presentaron mayor estabilidad térmica. Se demostró que la incorporación de HAp en la formulación de bandejas biodegradables reduce su capacidad de absorción de agua y mejora sus propiedades térmicas e ignífugas.
Descargas
Referencias
ABNT. (1999). NBR NM-ISO 535. Papel e Cartao. Determinaçao da capacidade de absorçao de água. Método de Cobb.
ASTM International. (1997). Standard Test Method for Tensile Properties of Paper and Paperboard Using Constant-Rate-of-Elongation Apparatus (ASTM D828-97).
Bello, D., Hernández, M., & Guerra, N. (2011). Determinación de propiedades mecánicas y temperatura máxima de polimerización de cementos óseos acrílicos modificados con micro y nanopartículas de hidroxiapatita. Revista Latinoamericana de Metalurgia y Materiales, 31(1), 91-98.
Casas, A., Alonso, M. V., Oliet, M., Rojo, E., & Rodríguez, F. (2012). FTIR analysis of lignin regenerated from Pinus radiata and Eucalyptus globulus woods dissolved in imidazolium-based ionic liquids. Journal of Chemical Technology and Biotechnology, 87(4), 472–480. https://doi.org/10.1002/jctb.2724
Cataño, J., Guzman, K., & Perpiñan, M. (2021). Efecto de la incorporación de cáscara de arroz en las propiedades mecánicas del hormigón y de los bloques de suelo-cemento. Una revisión sistemática [Tesis de grado]. Universidad Cooperativa de Colombia.
Coman, V., Teleky, B.-E., Mitrea, L., Martău, G. A., Szabo, K., Călinoiu, L.-F., & Vodnar, D. C. (2020). Chapter Five - Bioactive potential of fruit and vegetable wastes (F. Toldrá, Ed.; Vol. 91, pp. 157–225). Academic Press. https://doi.org/10.1016/bs.afnr.2019.07.001
Cruz Tirado, L. J. P. (2017). Influencia de la temperatura y tiempo de Termoformado en las Propiedades Mecánicas de Bandejas de Almidón y Fibras Vegetales [Tesis de grado]. Universidad Nacional de Trujillo.
Cruz-Tirado, J. P., Vejarano, R., Tapia-Blácido, D. R., Barraza-Jáuregui, G., & Siche, R. (2019). Biodegradable foam tray based on starches isolated from different Peruvian species. International Journal of Biological Macromolecules, 125, 800–807. https://doi.org/10.1016/j.ijbiomac.2018.12.111
Espina, M., Cruz-Tirado, J. P., & Siche, R. (2016). Mechanical properties of trays based on starch of native plant species and fiber of agroindustrial wastes. Scientia Agropecuaria, 7(2), 133–143. https://doi.org/10.17268/sci.agropecu.2016.02.06
Fang, W., Zhang, H., Yin, J., Yang, B., Zhang, Y., Li, J., & Yao, F. (2016). Formation of hydroxyapatite crystals in the presence of polysaccharide. Cryst Crecimiento Des, 16, 1247-1255.
Feng, Y., Li, G., Li, X., Zhu, N., Xiao, B., Li, J., & Wang, Y. (2016). Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment. Bioresource Technology, 214, 520–527. https://doi.org/10.1016/j.biortech.2016.04.137
Fernández, M. (2016). New nanocomposite materials based on poly(L-lactic acid) hydroxyapatite and inorganic nanotubes with potential biomedical applications. Polytechnic University of Madrid.
Freitas, P. A. V., La Fuente Arias, C. I., Torres-Giner, S., González-Martínez, C., & Chiralt, A. (2021). Valorization of rice straw into cellulose microfibers for the reinforcement of thermoplastic corn starch films. Applied Sciences (Switzerland), 11(18). https://doi.org/10.3390/app11188433
Garcia, C., Paucar, C., & Gaviria, J. (2006). Estudio de algunos parámetros que determinan la síntesis de hidroxiapatita por la ruta de precipitación / Study of some parameters that determine the synthesis of hydroxyapatite by the precipitation route. Dyna, 73, 9–15.
Hajibeygi, M., Mousavi, M., Shabanian, M., Habibnejad, N., & Vahabi, H. (2021). Design and preparation of new polypropylene/magnesium oxide micro particles composites reinforced with hydroxyapatite nanoparticles: A study of thermal stability, flame retardancy and mechanical properties. Materials Chemistry and Physics, 258, 123917. https://doi.org/https://doi.org/10.1016/j.matchemphys.2020.123917
International Organization for Standardization. (2006). Plastics -- Determination of burning behaviour by oxygen index -- Part 2: Ambient-temperature test (ISO 4589-2:2006-06).
Kaewtatip, K., Poungroi, M., Holló, B., & Mészáros Szécsényi, K. (2014). Effects of starch types on the properties of baked starch foams. Journal of Thermal Analysis and Calorimetry, 115(1), 833–840. https://doi.org/10.1007/s10973-013-3149-5
Kaisangsri, N., Kerdchoechuen, O., & Laohakunjit, N. (2012). Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Industrial Crops and Products, 37(1), 542–546. https://doi.org/10.1016/j.indcrop.2011.07.034
Kalali, E. N., Wang, X., & Wang, D. Y. (2015). Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties. Journal of Materials Chemistry A, 3(13), 6819–6826. https://doi.org/10.1039/c5ta00010f
Kumar, K., Yadav, A. N., Kumar, V., Vyas, P., & Dhaliwal, H. S. (2017). Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. In Bioresources and Bioprocessing (Vol. 4, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1186/s40643-017-0148-6
Leyva-Jiménez, F. J., Oliver-Simancas, R., Castangia, I., Rodríguez-García, A. M., & Alañón, M. E. (2023). Comprehensive review of natural based hydrogels as an upcoming trend for food packing. Food Hydrocolloids, 135, 108124. https://doi.org/10.1016/j.foodhyd.2022.108124
Li, Y., Zhao, R., Hu, F., Lu, P., Ji, D., Luo, Q., Li, G., Yu, D., Wang, H., Song, Z., Li, S., & Liu, W. (2021). Laponite/lauric arginate stabilized AKD Pickering emulsions with shell-tunable hydrolytic resistance for use in sizing paper. Applied Clay Science, 206, 106085. https://doi.org/10.1016/j.clay.2021.106085
Lutfi, Z., Kalim, Q., Shahid, A., & Nawab, A. (2021). Water chestnut, rice, corn starches and sodium alginate. A comparative study on the physicochemical, thermal and morphological characteristics of starches after dry heating. International Journal of Biological Macromolecules, 184, 476–482. https://doi.org/10.1016/j.ijbiomac.2021.06.128
Machado, C. M., Benelli, P., & Tessaro, I. C. (2017). Sesame cake incorporation on cassava starch foams for packaging use. Industrial Crops and Products, 102, 115–121. https://doi.org/10.1016/j.indcrop.2017.03.007
MacLeod, M., Arp, H. P. H., Tekman, M. B., & Jahnke, A. (2021). The global threat from plastic pollution. Science, 373(6550), 61–65. https://doi.org/10.1126/science.abg5433
Mali, S., Debiagi, F., Grossmann, M. V. E., & Yamashita, F. (2010). Starch, sugarcane bagasse fibre, and polyvinyl alcohol effects on extruded foam properties: A mixture design approach. Industrial Crops and Products, 32(3), 353–359. https://doi.org/10.1016/j.indcrop.2010.05.014
Mao, D., Li, Q., Bai, N., Dong, H., & Li, D. (2018). Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohydrate Polymers, 180, 104–111. https://doi.org/10.1016/j.carbpol.2017.10.031
Martelli-Tosi, M., Assis, O. B. G., Silva, N. C., Esposto, B. S., Martins, M. A., & Tapia-Blácido, D. R. (2017). Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films. Carbohydrate Polymers, 157, 512–520. https://doi.org/10.1016/j.carbpol.2016.10.013
Mobasherpour, I., Heshajin, M. S., Kazemzadeh, A., & Zakeri, M. (2007). Synthesis of nanocrystalline hydroxyapatite by using precipitation method. Journal of Alloys and Compounds, 430(1–2), 330–333. https://doi.org/10.1016/j.jallcom.2006.05.018
Mohammed, A., Gaduan, A., Chaitram, P., Pooran, A., Lee, K.-Y., & Ward, K. (2023). Sargassum inspired, optimized calcium alginate bioplastic composites for food packaging. Food Hydrocolloids, 135, 108192. https://doi.org/10.1016/j.foodhyd.2022.108192
Mujtaba, M., Lipponen, J., Ojanen, M., Puttonen, S., & Vaittinen, H. (2022). Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review. Science of The Total Environment, 851, 158328. https://doi.org/10.1016/j.scitotenv.2022.158328
Nabipour, H., Wang, X., Song, L., & Hu, Y. (2020). A fully bio-based coating made from alginate, chitosan and hydroxyapatite for protecting flexible polyurethane foam from fire. Carbohydrate Polymers, 246. https://doi.org/10.1016/j.carbpol.2020.116641
Napper, I. E., & Thompson, R. C. (2020). Plastic debris in the marine environment: history and future challenges. Global Challenges, 4(6), 1900081. https://doi.org/10.1002/gch2.201900081
Patrício Silva, A. L., Prata, J. C., Walker, T. R., Duarte, A. C., Ouyang, W., Barcelò, D., & Rocha-Santos, T. (2021). Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chemical Engineering Journal, 405, 126683. https://doi.org/10.1016/j.cej.2020.126683
PlasticEurope. (2020). Plastics – the Facts 2020. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/
Sarifudin, A., Keeratiburana, T., Soontaranon, S., Tangsathitkulchai, C., & Tongta, S. (2020). Pore characteristics and structural properties of ethanol-treated starch in relation to water absorption capacity. LWT, 129, 109555. https://doi.org/10.1016/j.lwt.2020.109555
Sequeda, L., Díaz, M., Gutiérrez, S., Perdomo, S., & Gómez, O. (2012). Obtención de hidroxiapatita sintética por tres métodos diferentes y su caracterización para ser utilizada como sustituto óseo. Rev. Colomb. Cienc. Quím. Farm, 41(1), 50–66.
Sheng, W., Chen, Y., Mao, H., Li, Y., Xiao, X., Wang, C., Ye, Y., & Liu, W. (2021). Rational design of vapor-deposited self-crosslinking polymer for transparent flexible oxygen barrier coatings. Journal of Applied Polymer Science, 138(21). https://doi.org/10.1002/app.50505
Suwanprateepa, S., Kumsapayaa, C., & Sayan, P. (2017). Structure and thermal properties of rice starch-based film Mixed with mesocarp cellulose fiber. Materials Today Proceedings, 2039–2047.
Tako, M., Tamaki, Y., Teruya, T., & Takeda, Y. (2014). The Principles of Starch Gelatinization and Retrogradation. Food and Nutrition Sciences, 05(03), 280–291. https://doi.org/10.4236/fns.2014.53035
Uslu, M. K., & Polat, S. (2012). Effects of glyoxal cross-linking on baked starch foam. Carbohydrate Polymers, 87(3), 1994–1999. https://doi.org/10.1016/j.carbpol.2011.10.008
Vallo, C. I., Montemartini, P. E., Fanovich, M. A., Porto Ló Pez, J. M., & Cuadrado, T. R. (1999). Polymethylmethacrylate-Based Bone Cement Modified with Hydroxyapatite. J Biomed Mater Res, 48(2), 150-158.
Wang, C., Tang, C. H., Fu, X., Huang, Q., & Zhang, B. (2016). Granular size of potato starch affects structural properties, octenylsuccinic anhydride modification and flowability. Food Chemistry, 212, 453–459. https://doi.org/10.1016/j.foodchem.2016.06.006
Zhang, P., Dong, S. J., Ma, H. H., Zhang, B. X., Wang, Y. F., & Hu, X. M. (2015). Fractionation of corn stover into cellulose, hemicellulose and lignin using a series of ionic liquids. Industrial Crops and Products, 76, 688–696. https://doi.org/10.1016/j.indcrop.2015.07.037
Zima, A. (2018). Bioactive hybrid biomaterials based on hydroxyapatite-chitosan with improved mechanical resistance. Spectrochim. Acta, 193, 175–184. https://doi.org/10.1016/j.saa.2017.12.008
Publicado
Número
Sección
Licencia
Derechos de autor 2024 David Callirgos, Raúl Siche
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license