Efecto de las condiciones de cultivo sobre el crecimiento y la producción de ácido docosahexaenoico por Aurantiochytrium limacinum cepa 85
DOI:
https://doi.org/10.17268/manglar.2015.005Resumo
El efecto de la velocidad de rotación, pH, temperatura y salinidad sobre el crecimiento y producción de ácido docosahexaenoico (DHA) en una cepa de traustoquitridio con 99% de similaridad a Aurantiochytrium limacinum fueron investigados con ensayos a tres niveles: 50, 100 y 150 rpm; 4, 7 y 9 pH; 20, 25 y 30°C; 10, 20 y 30 ppm, respectivamente. La biomasa se estimó por el peso seco de las células, y el DHA por cromatografía de gases expresados como AGT en porcentaje. Se encontró que la velocidad de rotación afecto más al crecimiento, en donde una excesiva agitación afecta el crecimiento y una deficiente agitación disminuye su tasa de crecimiento. Iguales resultados se obtuvieron en relación al pH, en donde a pH más alcalino (pH9) afecta el crecimiento más que a la producción de DHA. En cambio cuando se evaluó la temperatura, este parámetro afecto el crecimiento y la producción de DHA de manera inversa, observando que a temperaturas altas hay mayor crecimiento, pero a temperaturas bajas hay un mayor porcentaje de DHA, similares resultados se obtuvieron al evaluar diferentes niveles de la salinidad, en donde mejores crecimiento fueron a salinidades más altas, pero la producción de DHA fue ligeramente más alta a la salinidad más baja. Los resultados demuestran que el crecimiento en función de la biomasa y el porcentaje de DHA en relación los ácidos grasos totales, están estrechamente relacionados a las variaciones de los parámetros evaluados.Downloads
Referências
Arafiles K.H.V., J.C.O. Alcantara, P.R.F. Cordero, J.A.L. Batoon, F.S. Galura, E.M. Leaño and G.R. Dedeles. 2011. “Cultural Optimization of Thraustochytrids for Biomass and Fatty Acid Production.” Mycosphere 2(5):521–531.
Bajpai, PK, P. Bajpai, and O.P. Ward. 1991. “Opti mization of production of docosahexaenoic acid (DHA) by Thraustochytrium aureum ATCC 34304.” Journal of the American Oil Chemists Society. Canada, 68: 509 – 514
Bligh, E.G, and W.J. Dyer. 1959. “A rapid method of total lipid extraction and purification.” Canadian Journal of Biochemistry and Physio logy, 37: 911 – 917
Byung-Ki, H., Ch. Dae-Won, K. Ho-Jung, P. Chun-Ik and S. Hyuung-Joon. 2002. “Effect of Cul ture Conditions on Growth and Production of Docosahexaenoic Acid (DHA) using Thraus tochytrium aureum ATCC 34304.” Biotechnol. Bioprocess Eng. 7:10-15
Chochoey, K and Verduyn C. 2012. “Growth, fatty acid profile in major lipid classes and lipid fluidity of aurantiochytrium mangrovei sk-02 as a function of growth temperature.” Brazilian Journal of Microbiology. 187-200.
Das, U.N. 2008. “Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia, and Alzhei-mer's disease-but how and why?” Prostaglan dins Leukot Essent Fatty Acids, 78:11–19.
De Swaaf, ME, L. Sijtsma, and J.T.Pronk. 2003. “High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii”. Biotechnol Bioeng, 81:666-672
Fan, K.W., L.J. Vrijmoed, and E.B.G. Jones. 2002. “Physiological studies of subtropical man- grove Thraustochytrids.” Botanica Marina. China, 45: 50 – 57.
Fan, KW and Chen F. 2006. Production of high-value products by the marine microalgae thraustochytrids. In Bioprocessing for Value added products from renewable resources; Yang, S. T., Ed.; Elsevier Science: New York.
Hooper, L, R.L. Thompson, R.A. Harrison, C.D. Summerbell, A.R. Ness, and H.J. Moore. 2006. “Risks and benefits of omega 3 fats for mor tality, cardiovascular disease, and cancer: Systematic Review. BMJ; 332:752–60
Huang, J., T. Aki, K. Hachida, T. Yokochi, S. Kawa moto, S. Shigeta, K. Ono and O. Suzuki. 2001. “Profile of Polyunsaturated Fatty Acids Pro duced by Thraustochytrium sp. KK17-3.” JAOCS, 78:605-610.
Huey-Lang, Y, L. Chung-Kuang, Chen Shu-Fen, Ch. Young-Mao and Ch. Yi-Ming. 2010. “Iso lation and Characterization of Taiwanese Heterotrophic Microalgae: Screening of Strains for Docosahexaenoic Acid (DHA)” Production, 12:173-185.
Iida, I., T. Nakahara, T. Yokochi, Y. Kamisaka, H. Yagi, M. Yamaoka, and O. Suzuki. 1996. “Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization.” Journal of Fermentation and Bioengineering, 81: 76-78
Jain, R., S. Raghukumar and D. Chandramohan. 2004. “Enhancement of the production of the polyunsaturated fatty acid, docosahexae noic acid in thraustochytrid protists.” Mar Biotechnol, 6:S59–S65
Jiménez, A. 2014. Aislamiento y caracterización molecular de microorganismos del orden Thraustochytriales provenientes de los man glares de Tumbes. Tesis Título profesional Bióloga Genetista Biotecnología. Universi dad Nacional Mayor de San Marcos, Facul tad de Ciencias Biológicas, Escuela Genéti ca y Biotecnología. Lima, Perú.
Kai-Chaung, Ch., Ch. Chun-Yao, S. Yu-Ming and Ch. Yi-Min. 2012. “Effect of culture conditions on growth, lipid content, and fatty acid com position of Aurantiochytrium mangrovei strain BL10.” AMB Express. 2:42
Kumon, Y., R. Yokohama, Z. Haque, T. Yokochi, D. Honda and T. Nakahara. 2006. “A New Labyrinthulid Isolate That Produces Only Docosahexaenoic Acid.” Marine Biotechno logy, 8:170-177
Leaño, EM and IC. Liao. 2004. “Thraustochytrids: potential DHA source for marine fish nutri tion.” Global Aquaculture Advocate 7:87–88.
Leaño, E.M., R.S.J. Gapasin, B. Polohan and L.L.P. Vrijmoed. 2003. Growth and fatty acid pro duction of thraustochytrids from Panay mangroves, Philippines. Fungal Diversity, 12:111-122
Li, Y, Z. Zhao and F. Bai. 2007. “High-density cul tivation of oleaginous yeast Rhodospori dium toruloides Y4 in fed-batch culture.” Enz. Microbial Tech, 41:312-317.
Lu-Jing, R., J. Xiao-Jun, H. He, Q. Liang, F. Yun, T. Quian-Quian and O. Ping-Kai. 2010. “Deve lopment of a stepwise aeration control stra tegy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl. Microbiol.” Biotechnol, 87:1649-1656
Nagano, N., Y. Taoka, D. Honda and M. Hayashi. 2009. “Optimization of culture conditions for growth and docosahexaenoic acid production by a marine Thraustochytrid, Aurantiochytrium limacinum mh 0186.” Journal of Oleo Science. Japan, 58 (12): 623-628.
Nakazawa, A., H. Matsuura, R. Kose, S. Kato, D. Honda, I. Inouye, K. Kaya and M. Watanabe. 2012. “Optimization of culture conditions of the thraustochytrido Aurantiochytrium sp. strain 18W-13a for squalene production.” Bioresource Technology, 109:287-291.
Pauly, D, V. Christensen, S. Guenette, T.J. Pitcher, U.R. Sumaila, C.J. Walters, R. Watson and D. Zeller. 2002. “Towards sustainability in world fisheries.” Nature, 418(6898): 689–695
Perveen, Z., H. Ando, A. Ueno, Y. Ito, Y. Yamamo to, Y. Yamada, T. Takagi, T. Kaneko, K. Koga me and H. Okuyama. 2006. “Isolation and characterization of a novel thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid.” Biotechnology Letters, 28 (3):197- 202.
Raghukumar, S. 2008. “Thraustochytrid marine protists: production of PUFAs and other emerging technologies.” Marine Biotechno logy, 10:631-640
Ratledge, C. 2004. “Fatty acid biosynthesis in microorganisms being use for single cell oil production.” Biochimie, 86 (11):807–815
Ruxton, C.H.S., S.C. Reed, M.J.A. Simpson and K.J. Millington. 2004. “The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence.” J. Hum. Nutr. Diet, 17:449-459.
Singh, A and Ward OP. 1996. “Production of high yields of docosahexaenoic acid by Thrausto chytrium aureum ATCC 28210.” Journal of Industrial Microbiology, 16:370–373
Shene, C., A. Leyton, Y. Esparza, L. Flores, B. Quilodran, I. Hinzpeter and M. Rubilar. 2010. “Microbial oils and fatty acids: effect of car bon source on docosahexaenoic acid (C22: 6 n-3, DHA) production by thraustochytrid strains” J. Soil Sci. Plant. Nutre, 10 (3):207–216
Spolaore P, C. Joannis-Cassan, E. Duran and A. Isambert. 2006. “Commercial applications of microalgae.” J Biosci Bioeng 101:87–96.
Taoka Y, N. Nagano, Y. Okita, H. Izumida, S. Sugi moto and M. Hayashi. 2009. Influences of culture temperature on the growth, lipid content and fatty acid composition of Aurantiochytriumsp. Strain mh0186.” Mar Biotechnol, 11 (3):368–374.
Won-Kyung, H., R. Dina, S. Pil-Soo, P. Sung-Yong, H. Byung-Ki, K. Chul and S. Jeong-woo. 2011. “Production of Lipids Containing High Levels of Docosahexaenoic Acid by a Newly Isola ted Microalga, Aurantiochytriumsp. KRS101” Appl. Biochem. Biotechnol, 164:1468-1480.
Wu. ST, S.T. Yu, and L.P. Lin. 2005. “Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31.” Process Biochem, 40:3103-3108.
Yaguchi, T., S. Tanaka, T. Yokochi, T. Nakahara and T. Higashihara. 1997. “Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21”. J. Am. Oil. Chem. Soc. Japan, 74: 1431-1434.
Yokochi, T.D., T. Honda, T. Higashihara, and T. Nakahara. 1998. “Optimization of doco sahexanoic acid production by Schizochy trium limacinum SR21.” Appl Microbiol Biotechnol. Japan 49: 72-76.
Zeng, Y., J. Xiao-Jun, L. Min, R. Lu-Jing, J. Li-Jing, O. Ping-Kai and H. He. 2011. “Development of a Temperature Shift Strategy for Efficient Docosahexaenoic Acid Production by a Marine Fungoid Protist, Schizochytrium sp. HX-308.” Appl. Biochem. Biotechnol, 164: 249-255.
Zhu, L.Y., X.C. Zhang, L. Ji, X.J. Song and Ch. Kuang 2007. “Changes of lipid content and fatty acid composition of Schizochytrium limacinumin response to different temperatures and salinities.” Proc Biochem, 42(2):210–214.
Downloads
Publicado
Edição
Secção
Licença
Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license