Enfermedades fungosas asociadas al cultivo de lechuga (Lactuca sativa L.) y alternativas de control químico in vitro y en condiciones hidropónicas
DOI:
https://doi.org/10.57188/Palabras clave:
Lechuga, hidroponía, patogenicidad, Alternaria solani, Rhizoctonia, Fusarium, in vitroResumen
La lechuga (Lactuca sativa L.) es una de las hortalizas de hoja más importantes cultivada ampliamente en todo el mundo, en condiciones hidropónicas presenta enfermedades que generan pérdidas económicas y una fluctuación negativa en su comercialización. Con el objetivo de identificar los agentes causales, describir su sintomatología e implementar propuestas de control químico; se recolectaron muestras de plantas enfermas y se obtuvieron aislados en placas de Petri con medio de cultivo papa dextrosa agar; desarrollado el hongo se hicieron repiques para obtener el cultivo puro. Con los hongos aislados se hicieron pruebas de patogenicidad. In vitro se probaron 7 tratamiento y 1 testigo mediante la técnica del medio envenenado. In vivo se realizaron ensayos tanto en sustrato estéril y no estéril, a los 5 días después de la siembra, 10 y 20 días después del trasplante se aplicaron 7 tratamientos y 1 testigo, evaluándose el peso fresco de lechuga cosechada. Se identificó a los hongos Alternaría solani causando mancha foliar, Rhizoctonia solani causando pudrición del cuello, Fusarium sp. causando marchitez, y Pythium sp. causando pudrición de la raíz. In vitro, los tratamientos T7 “Parachupadera” (flutolanil+captan) y T8 “Aliette” (fosetyl aluminio) inhibieron al 100 % el crecimiento de los hongos Alternaria solani, Rhizoctonia solani y Fusarium sp. In vivo en el ensayo con sustrato no estéril “Licthor” (Extracto de Saccharum officinarum) obtuvo el primer lugar con 174 gramos de peso fresco, en el ensayo con sustrato estéril “Parachupadera” obtuvo el primer lugar con 122,8 gramos.
Descargas
Referencias
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265-267.
Aguilar, R. (2020). Etiología y control de la pudrición del cuello en el cultivo de Gypsophila paniculata en el Valle de Caraz, Ancash.
Ahmed, S., anderso, S., Roy, S. K., Woo, S. H., Sonawane, K. D., & Shohael, A. M. (2019). Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agric., 4, 361-373.
Alburqueque, A. D., & Gusqui, M. R. (2018). Eficacia de fungicidas químicos para el control in vitro de diferentes fitopatógenos en condiciones controladas. Arnaldoa, 25(2), 489-498. http://doi.org/10.22497/arnaldoa.252.25209
Anderson, N. A. (1982). The genetics and pathology of Rhizoctonia solani. Annu. Rev. Phytopathol., 20, 329-347.
Bantis, F., Smirnakou, S., Ouzounis, T., Koukounaras, A., Ntagkas, N., & Radoglou, K., (2018). Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci. Hortic. 235, 437-451. https://doi.org/10.1016/ j. scienta.2018.02.058.
Bañuls, J. (1990). Comportamiento de Diferentes Combinaciones Injerto-Patrón de Cítricos frente a la salinidad, Instituto Valenciano de Investigaciones Agrarias, Valencia – España.
Barnett, H. L., & Hunter, B. B. (1998). Illustrate Genera Imperfect. Editorial Burgess Publishing Company. 241 pp.
Biogen. (2021). Licthor. Fungicida biológico (en línea). Ficha técnica. Disponible en: http://www.biogenagro.com/wp-content/uploads/2021/06/FT-LICTHOR1.pdf
Booth, C. (1971). The Genus Fusarium. CMI. Kew, Surrey. pp. 19-31.
Boros, I. F., Székely, G., Balázs, L., Csambalik, L. & Sipos, L. (2023). Effects of LED lighting environments on lettuce (Lactuca sativa L.) in PFAL systems–A review. Scientia Horticulturae, 321, 112351.
Bre´s,W., Kleiber, T., Markiewicz, B., Mieloszyk, E., & Mieloch, M. (2022). The Effect of NaCl Stress on the Response of Lettuce (Lactuca sativa L.). Agronomy, 12, 244. https://doi.org/10.3390/agronomy12020244
Camejo, D., Frutos, A., Mestre, T. C., del Carmen, P. M., Rivero, R. M., & Martinez, V. (2020). Artificial light impacts the physical and nutritional quality of lettuce plants. Horticulture, Environment, and Biotechnology, 61, 69–82.
Chaudhary, L. B., Meetum, P., Kanjanamaneesathian, M., Adhikari, R., & Mongkol, R. (2023). Efficacy of Some Plant Extracts against Root Rot Disease of Green Oak Lettuce (Lactuca sativa var. Crispa) Caused by Pythium sp. Grown in a Hydroponic System. Agro-biodiversity for life and environment, 99.
Corrêa, E. B., & Bettiol, W. (2009). Controle da podridão de raiz e promoção de crescimento em hidroponia com bactérias.
Daniel, R., & Guest, D. (2005). Defence responses induced by potassium phosphonate in Phytophthora palmivora challenged Arabidopsis thaliana. Physiological and Molecular Plant Pathology, 67(3-5), 194-201.
De Souza, P. F., Borghezan, M., Zappelini, J., de Carvalho, L. R., Ree, J., & Barcelos-Oliveira, J. L. (2019). Physiological differences of ‘Crocantela’ lettuce cultivated in conventional and hydroponic systems. Hortic. Bras., 37, 101-105.
Diaz, C. (2021). Evaluación del crecimiento de hortalizas de lechuga (Lactuca sativa L.) y pepino (Cucumis sativus L.) utilizando ácido húmico y humus orgánico proveniente de la pila de compost. Chiapas. Tesis Ingeniería Ambiental. Universidad de Ciencias y Artes de Chiapas. México.
El-Kazzaz, K. A., & El-Kazzaz, A. A. (2017) Soilless agriculture a new and advanced method for agriculture development: an introduction. Agri Res Tech, 3, 63–72. https://doi.org/10.19080/artoaj.2017.03.555610
FAO. (2021.) La seguridad alimentaria y nutrición en el mundo. s.l., s.e. 1-240 p.
Fungicide Resistance Action Commitee (FRAC). (2017). List of Fungicide Common Names. http://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2017final.pdf.
Frech, E. R., & Hebert, T. T. (1980). Métodos de investigación fitopatológica. Editorial IICA. San José Costa Rica. 277 pp.
Grabitske, H. A., & Slavin, J. L. (2009). Gastrointestinal effects of low-digestible carbohydrates. Critical Reviews in Food Science and Nutrition, 49(4), 327–360. https://doi.org/10.1080/10408390802067126
Grosch, R., Schneider, Kofoet, A., & Feller, C. (2011). Impact of continuous cropping of lettuce on the disease dynamics of bottom rot and genotypic diversity of Rhizoctonia solani AG 1-IB. J. Phytopathol., 159, 35-44
Gullino, M. L., Gilardi, G., & Garibaldi, A. (2019). Ready-to-eat salad crops: the plant pathogen’s heaven. Plant Disease, 103, 2153-2170.
Herrero, J. (2005). Flora de Iberia. Disponible en: http://floradeiberia.com
Ihsan, F. H., & Jawhary, A. L. 2006. Effect of copper sulfate on some soil fungi isalated from AL- Qadisiya District fields. Irak: AL-Qadisiya. 9 p.
Ismail, H., Gillespie, A. L., Calderwood, D., Iqbal, H., Gallagher, C., Chevallier, O. P., Elliott, C. T., Pan, X., Mirza, B., & Green, B. D. (2019). The health promoting bioactivities of Lactuca sativa can be enhanced by genetic modulation of plant secondary metabolites. Metabolites, 9(5), 97.
Jeong, S. W., Kim, G. S., Lee, W. S., Kim, Y. H., Kang, N. J., Jin, J. S., Gye Min Lee, Kim S. T., El-Aty A.M. A., Shim J., & Shin, S. C. (2015). The effects of different night-time temperatures and cultivation durations on the polyphenolic contents of lettuce: Application of principal component analysis. Journal of advanced research, 6(3), 493-499.
Jois, S. (2021). Morphological characteristics of hydroponically grown lettuce (Lactuca sativa) treated with Pranic Agriculture. Egyptian Journal of Agricultural Research, 99(4), 391-396.
Kaiser, C., & Ernst, M. (2012). Hydroponic Lettuce CCDCP-63. Center for Crop Diversification, University of Kentucky College of Agriculture, Food and Environment: Lexington, KY, USA. Available online:
Kameoka, T., & Hashimoto, A. (2019). Chapter 3.2 - assessment from food science. In: Anpo, M., Fukuda, H., Wada, T. (Eds.), Plant Factory Using Artificial Light. Elsevier, pp. 131–141. https://doi.org/10.1016/B978-0-12-813973-8.00034-8.
Khabbaz-Jolfaee, H., Mohammadi-Moghadam, M., Baradaran, G., & Ghalandar, M. (2023). Investigation on the Efficacy of some Fungicides in Controlling Alternaria Late Blight of Pistachio. Journal of Nuts, 14(3), 173-180.
Khakimov, A., Salakhutdinov, I., Omolikov, A. & Utaganov, S. (2022). Traditional and current-prospective methods of agricultural plant diseases detection: A review. IOP Conference Series: Earth and Environmental Science, 951(1), 012002. https://doi.org/10.1088/1755-1315/951/1/012002
Kim, M. J., Moon, Y., Tou, J. C., Mou, B., & Waterland, N. L. (2016). Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). Journal of Food Composition and Analysis, 49, 19–34. https://doi.org/10.1016/j.jfca.2016.03.004
Kofoet, A., & K. Fischer. 2007. Evaluation of plant resistance improvers to control Peronospora destructor, P. parasitica, Bremia lactucae and Pseudoperonospora cubensis. Journal of Plant Disease and Protection, 114(2), 54-61.
Koukounaras, A. (2021). Advanced greenhouse horticulture: New technologies and cultivation practices. Horticulturae. 7, 1.
Kumar, P., & Saini, S. (2020). Nutrients for hydroponic systems in fruit crops. London: Urban Horticulture-Necessity of the Future.
Marchan, D. J. (2018). Hongos asociados a infecciones en la zona de injertación de plantas de vid y eficacia de Trichoderma harzianum en su control. Tesis para optar el título de Ing. Agrónoma. 92 pp.
Matheron M. (2008.) Fusarium wilt of leafy greens: Managing a challenging disease. PDT. The University of Arizona. Yuma Agricultural Center. Pag. 2.
Medina-Lozano, I., Bertolín, J. R., & Díaz, A. (2021). Nutritional value of commercial and traditional lettuce (Lactuca sativa L.) and wild relatives: Vitamin C and anthocyanin content. Food Chem. 359, 129864.
Owen-Going, N., Sutton, J. C., & Grodzinski, B. (2003). Relationships of Pythium isolates and sweet pepper plants in single-plant hydroponic units. Canadian Journal of Plant Pathology, 25(2), 155–167. doi:10.1080/07060660309507064
Pacheco, A. J. (2022). Evaluación del efecto de fungicidas para el control de Botrytis spp. y Fusarium spp. en hojas de cinco variedades de tomate (Solanum lycopersicum L.) bajo condiciones de laboratorio (Doctoral dissertation, Zamorano: Escuela Agrícola Panamericana).
Pasquali, M., Dematheis, F., Gullino, M. L., & Garibaldi, A. (2007). Identification of race 1 of Fusarium oxysporium f. sp. lactucae on lettuce by inter-retrotransposon sequence-characterized amplified region technique. Phytopathology, 97, 987-996.
Paugh, K. R., & Gordon, T. R. (2021). Survival of Fusarium oxysporum f. sp. lactucae on crop residue in soil. Plant Disease, 105(4), 912-918. https://doi.org/10.1094/PDIS-07-20-1464-RE
Qadeer, A., Butt, S. J., Asam, H. M., Mehmood, T., Nawaz, M. K., & Haidree, S. R. (2020). Hydroponics as an innovative technique for lettuce production in greenhouse environment. Pure Appl. Biol., 9, 20-26.
Rotem, J. (1994). The genus Alternaria biology, epidemiology, and pathogenicity, 1st ed. The American Phtyopathological Society, St. Paul, Minnesota, pp 48, 203.
Sapkota, S., Sapkota, S., & Liu, Z. (2019). Effects of nutrient composition and lettuce cultivar on crop production in hydroponic culture. Horticulturae. 5, 72.
Scott, J. C., Gordon, T. R., Kirkpatrick, S. C., Koike, S. T., Matheron, M. E., Ochoa, O. E., Truco, M. J., & Michelmore, R. W. (2012). Crop rotation and genetic resistance reduce risk of damage from fusarium wilt in lettuce. California Agriculture, 66(1), 20-24.
Shams, M., Ekinci, M., Turan, M., Dursun, A., Kul, R. & Yildirim, E. (2019). Growth, nutrient uptake and enzyme activity response of lettuce (Lactuca sativa L.) to excess copper. Environmental Sustainability, 2(1), 67–73. https://doi.org/10.1007/s42398-019-00051-7.
Shatilov, M. V., Razin, A. F., & Ivanova, M. I. (2019). Analysis of the world lettuce market. IOP Conference Series: Earth and Environmental Science, 395(012053), 1–6. https://doi.org/10. 1088/1755-1315/395/1/012053
Sherf, A. F. & MacNab A. A. (1986). Vegetable diseases and their control.
Shi, M., Gu, J., Wu, H., Rauf, A., Bin-Emran, T., Khan, Z., Mitra, S., Aljohani, A. S. M., Alhumaydhi, F. A., & Al-Awthan, Y. S. (2022). Phytochemicals, nutrition, metabolism, bioavailability, and health benefits in lettuce A comprehensive review. Antioxidants, 11, 1158.
Simmons, E. G. (2007). Alternaria. An identification manual. CBS Biodiversity Series 6. CBS Fungal Biodiversity Centre, Utrecht, The Netherlands.
Singh, R., Upadhyay, S., Diwakar, A., Sharma, I., & Affiliation, N. (2020). A study on hydroponic farming system of wheat, spinach and sword lily for sustainable development of agriculture. Bio Sci. Res. Bull., 35, 58-63.
Sneb, B., Burgee, L., & Ogoshi, A. (1991). Identification of Rhizoctonia species. APS PRESS USA. 65 pp.
Soraluz, J. L. T. (2022). Interferência das plantas daninhas no feijoeiro-comum sob épocas e densidades de semeadura diferentes (Doctoral dissertation, Tese de lencenciatura).
Sularz, O., Smoleń, S., Koronowicz, A., Kowalska, I., & Leszczyńska, T. (2020). Chemical composition of lettuce (Lactuca sativa L.) biofortified with iodine by KIO3, 5-Iodo-, and 3.5-diiodosalicylic acid in a hydroponic cultivation. Agronomy 10(7), 1-17. https://doi.org/10.3390/agronomy10071022
Sun, Q., Hu, K., & Yang, X. L. (2014). The Efficacy of copper sulfate in controlling infection of Saprolegnia parasitica. J. World Aquac. Soc., 45, 220–225.
Sutton, J. C., Sopher, C. R., Owen-Going, T. N., Liu, W., Grodzinski, B., Hall, J. C., & Benchimol, R. L. (2006). Etiology and epidemiology of Pythium root rot in hydroponic crops: current knowledge and perspectives. Summa Phytopathologica, Botucatu, 32(4), 307-321.
Teng, J., Liao, P., & Wang, M. (2021). The role of emerging micro-scale vegetables in human diet and health benefits – an updated review based on microgreens. Food and Function, 12, 1914-1932. https://doi.org/10.1039/D0FO03299A
Utkhede, R. S., Lévesque, C. A., & Dinh, D. (2000). Pythium aphanidermatum root rot in hydroponically-grown lettuce and the effect of chemical and biological agents on its control. Canadian Journal of Plant Pathology, 22(2), 138-144.
Valdiviezo, J. E. (2010). Caracterización y pruebas de control del agente causal de la pudrición del tallo en el cultivo de arroz (Oryza sativa L.), en el Valle del Chira Piura.
Wardhana, I., Hasbi, H., & Wijaya, I. (2016) Respon Pertumbuhan dan Produksi Tanaman Selada (Lactuca savita L.) pada Pemberian Dosis Pupuk Kandang Kambing dan Interval Waktu Aplikasi Pupuk Cair Super Bionik. Agritop Jurnal Ilmu-ilmu Pertanian, 14(2), 165.
Yang, X., Gil, M. I., Yang, Q. & Tomás-Barberán, F. A. (2022). Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Compr. Rev. Food Sci. Food Saf., 21, 4–45.
Yazdi, M., Kolahi, M., Kazemi, E., et al., (2019). Study of the contamination rate and change in growth features of lettuce (Lactuca sativa Linn.) in response to cadmium and a survey of its phytochelatin synthase gene. Ecotox. Environ. Safe., 180, 295–308. https://doi.org/10.1016/j.ecoenv.2019.04.071
Zhang, X., He, D., Niu, G., Yan, Z., & Song, J. (2018). Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int. J. Agricult. Biol. Eng. 11, 33–40.
Zheng, J., Sutton, J. C., & Yu, H. (2000). Interactions among Pythium aphanidermatum, roots, root mucilage, and microbial agents in hydroponic cucumbers. Canadian Journal of Plant Pathology, 22(4), 368-379.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 René Aguilar-Anccota, Andry C. Guillen-Juárez1, Edgar Maldonado-Duque, Robert Rafael- Rutte, José A. Silupú-Masías, Yuri H. Calle-Cheje, Arturo Morales- Pizarro
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license