El campo magnético mejora la respuesta morfo-fisiológica en cultivares de Rubus spp. sin reguladores de crecimiento
DOI:
https://doi.org/10.57188/manglar.2025.006Palabras clave:
Campo magnético, índice de clorofila, respuesta morfogénica, Rubus spp., SPADResumen
Los campos magnéticos (CMs) afectan los sistemas biológicos, en particular el crecimiento y desarrollo de las plántulas in vitro, que pueden ser utilizados como una alternativa viable en la propagación in vitro de los cultivares de Rubus spp. Por tanto, el presente trabajo evaluó la influencia de los CMs en la respuesta morfo-fisiológica in vitro de plántulas de tres cultivares de Rubus spp. Secciones nodales de tres cultivares de Rubus spp. fueron colocados en medio de crecimiento y desarrollo, posteriormente fueron colocados en ambiente de crecimiento y sometidos a tres intensidades de los CMs 50, 100 y 200 mT empleando imanes de neodimio. El índice de clorofila fue mejorado por la exposición a los CMs comparados al control en los tres cultivares en estudio, el empleo del CM de 200 mT registró mayor longitud de brote solo en plántulas del cultivar Brazos. Los CMs mejoraron significativamente índice de clorofila y la longitud de brote en medios de cultivo sin reguladores de crecimiento, debiendo realizarse más experimentos de los efectos de los CMs en esta especie para emplearse en el futuro para la propagación in vitro de esta especie.
Descargas
Referencias
Ahmad, M. E., & Elaziem, T. M. A. (2022). In vitro regeneration and improving kaempferol accumulation in blackberry (Rubus fruticosus L.) callus and suspension cultures. Egyptian Journal of Chemestry, 65(12), 369-383. 3. http://dx.doi.org/10.21608/EJCHEM.2022.118717.5340
Airò, M., Ala, G., Buccheri, P., Caruso, M., Fascella, G., Giovino, A., & Mammano, M. M. (2017). Effect of weak magnetic fields on the in vitro propagation of Genista aetnensis (Raf. Ex Biv.) Dc. Acta Horticulturae, 1155, 387–392.
Aly, A. A., El-Desouky, W., & El-Leel, O. F. A. (2022). Micropropa-gation, phytochemical content and antioxidant activity of gamma-irradiated blackberry (Rubus fruticosus L.) plantlets. In vitro Cellular & Developmental Biology, 58, 457-46. https://doi.org/10.1007/s11627-021-10244-7
Atak, Ç., Emiroğlu, Ö., Alikamanoğlu, S., & Rzakoulieva, A. (2003). Stimulation of regeneration by magnetic field in soybean (Glycine max L. Merril) tissue cultures. Journal of Cell and Molecular Biology, 2(1), 113-119.
Atak, Ç., Çelik, Ӧ, Olgum, A., Alikamanoğlu, & Rzakoulieva, A. (2007). Effect of magnetic field on peroxidase activities of soybean tissue culture. Biotechnology & Biotechnological Equipment, 21(2), 166-171.
Bahadir, A., Beyaz, R., & Yildiz, M. (2018). Effect of magnetic field on in vitro seedling growth and shoot regeneration from cotyledon node explants of Lathyrus chrysanthus Boiss. Bioelectromagnetics, 39(7), 547-555.
Broszkiewicz, A., Detyna, J., & Bujak, H. (2018). Influence of the magnetic field on the germination process of tosca bean seeds (Phaseolus vulgaris L.). Plant Breeding and Seed Science, 77, 103-116.
Cheikh, O., Elaoud, A. Amor, H. B., & Hozayn, M. (2018). Effect of permanent magnetic field on the properties of static water and germination of cucumber seeds. International Journal of Multidisciplinary and Current Research, 6(1), 108-116.
Erez, M. E., & Özbek, M. (2024). Magnetic field effects on the physiologic and molecular pathway of wheat (Triticum turgidum L.) germination and seedling growth. Acta Physiologiae Plantarum, 46, 5.
Flórez, M., Martínez, E., Carbonell, M. V., Álvarez, J., & Campos, A. (2014). Germination and initial growth of triticale seeds under stationary magnetic treatment. Journal of Advances in Agriculture, 2(2), 72-79.
Fung, Y., Pimentel, C., Salgueiro, C. L., Alfarge, A. C., Olivera, R., & Sato, A. (2010). Efecto de la aplicación de un campo magnético sobre la germinación in vitro de semillas de Rosmarinus officinalis L. Biotecnología Vegetal, 10(2), 105-111.
García, F., & Arza, L. (2001). Influence of stationary magnetic field on water relations in lettuce seeds. Part I: Theoretical considerations. Bioelectromagnetics, 22(8), 589-595.
Hu, J., Zhang, H., Han, W., Wang, N., Ma, S., Ma, F., Tian, H., & Wang, Y. (2025). Physiological Responses Revealed Static Magnetic Fields Potentially Improving the Tolerance of Poplar Seedlings to Salt Stress. Forests, 15, 138.
Huang, X., Wu, Y., Zhang, S., Yang, H., Wu, W., Lyu, L., & Li, W. (2022). Variation in bioactive compounds and antioxidant activity of Rubus fruits at different developmental stages. Foods, 11, 1169. https://doi.org/10.3390/foods11081169
Husain, Z. M. A., & Jawad, L. K. (2019). Effect of magnetic field on the growth, multiplication, and concentration of the volatile oil of Rosemary officinalis in vitro. Iraqi Journal of Agriculture Sciences, 50(4), 982-989.
Jin, Y., Guo, W., Hu, X., Liu, M., Xu, X., Hu, F., ... & Huang, J. (2019). Static magnetic field regulates Arabidopsis root growth via auxin signaling. Scientific reports, 9(1), 14384.
Kataria, S., Baghel, L., & Guruprasad, K. N. (2017). Pre-treatment of seed with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatalysis and Agriculture Biotechnology, 10, 83-90.
Kefayeti, S., Kafkas, E., & Ercisli, S. (2019). Micropropagation of ‘Chaster thornless’ blackberry cultivar using axillary bud explants. Not Bot Horti Agrobo, 47(1), 162-168. https://doi.org/10.15835/nbha47111280
Maffei, M. E. (2014). Magnetic field effects on plant growth, development, and evolution. Frontiers in Plant Science, 5, 445.
Madhavan, J., & Anand, A. (2019). Exposure to magnetic fields reveals a positive effect on in vitro propagation of Stevia rebaudiana (Bertoni). Sugar Tech, 21, 691-695.
Medeiros, N. V., Fung, Y., Martínez, C. E., Ferrer, A. E., Asanza, G., & Gilart, F. (2013). Influencia de campos magnéticos sobre el establecimiento in vitro de embriones cigóticos de Adenanthera pavinina L. Biotecnología Vegetal, 13(3), 145-152.
Millones, C. E. (2018). Establecimiento y ensayos preliminares de propagación in vitro de zarzamora silvestre (Rubus sp.) del Centro Poblado San Salvador, región Amazonas. Revista de Investigación Científica UNTRM, 2(2), 31-38.
Millones, C. E., & Vásquez, E. R. (2020). Regeneración y enraiza-miento de brotes adventicios etiolados de cultivares de zarzamora (Rubus sp.). Revista de Investigaciones Altoandinas, 22(4), 330-342.
Murashige, T., & Skoog, F. (1962). A revised medium for rapid grown and bioassay with tobacco tissue culture. Physiologia plantarum, 15(3), 473 – 497.
Narasimhan, S., & Bindu, S. (2023). An assessment of the application of magnetic fields in the study of in vitro plant cell and tissue cultivation. Research Journal of Biotechnlogy, 18(12), 147-150.
Negishi, Y., Hashimoto, A., Tsushima, M., Dobrota, C., Yamashita, M., & Nakamura, T. (1999). Growth of pea epicotyl in low magnetic field implication for space research. Advances in Space Research, 23(12), 2029-2032.
Nyakane, N. E., Markus, E. D., & Sedibe, M. M. (2019). The effects of magnetic fields on plant growth: a comprehensive review. International journal of Food Engineering, 5(1), 79-87.
Pérez-Martínez, B. A., & Castañeda-Garzón, S. L. (2017). In vitro propagation of Rubus macrocarpus Benth. and Rubus bogotensis Kunth, as an ex situ conservation strategy. Acta Agronómica, 66(1), 102-108.
Prajapati, R., Kataria, S., Grade, R., Landi, M., & Jain, M. (2024). Unveiling the mechanisms underpinning alleviation of mercury toxicity by static magnetic field treatment in soybean. Journal of Plant Growth Regulation, 43, 135-151.
Rukundo, P., Carpentier, S. C., & Swennen, R. (2012). Deveopment of in vitro technique to screen for drought tolerant banana varieties by sorbitol induced osmotic stress. African Journal of Plant Science, 6(15), 416–425.
Samaan, M. S. F., & Nasser, M. A. (2022). Micropropagation of backberry (Rubus fruticosus) cv. Karaka Black. Egyptian Journal of Horticulture, 49(2), 187-198. https://doi.org/10.21608/EJOH.2022.151882.1205
Sarraf, M., Kataria, S., Taimourya, H., Santos, L. O., Manegatti, R. D., Jain, M., Ihtisham, M., & Shiliag. L. (2020). Magnetic field (MF) applications in plants: an overview. Plants, 9(9), 1137.
Schiehl, M., De França, T. O., & Biasi, L.A. (2020). Adecuação de protocolo para cultivo in vitro de amoreira-preta (Rubus sp.) ‘Xingu’. Journal of Biotechnology and Biodiversity, 8(2), 79-87. https://doi.org/10.20873/jbb.uft.cemaf.v8n2.schiehl
Sharafi, S. (2025). Enhanced seedling growth of annual medic under salt drought stress through ultrasonic wave and magnetic field treatments. Applied Water Science, 15, 59.
Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of Berries. International Journal of Molecules Sciences, 16(10), 24673-24706.
Thomas, S., Anand, A., Chinnusamy, V., Dahuja, A., & Basu, S. (2013). Magnetopriming circumvents the effect of salinity stress on germination in chickpea seeds. Acta Physiologiae Plantarum, 35(12), 3401-3411.
Ülgen, C., Yildirim, A., & Turker, A. (2020). Enhancement of plant regeneration in lemon balm (Melissa officinalis L.) with different magnetic field applications. International Journal of Secondary Metabolite, 7(2), 99-108.
Van, P. T., Da Silva, J. A. T., Ham. L. H., & Tanaka, M. (2011). The effects of permanent magnetic fields on in vitro growth of Phalaenopsis plantlets. Journal of Horticultural Science & Biotechnology, 86(5), 473-478.
Van, P. T., Da Silva, J. A. T., Ham, L. H., & Tanaka, M. (2012). Effects of permanent magnetic fields on in vitro growth of Cymbidium and Spathiphyllum shoots. In Vitro Cellular & Developmental Biology – Plant, 48(2), 225-232.
Wenhao, H., Nianzhao, W., Jihuai, H., Kun, Y., Fengyun, M., Huimei, T. & Yanping, W. (2023). The rhizosphere soil properties and bacteria community of poplar are affected by magnetic field under salt condition. Rhizosphere, 27, 100747.
Wu, J., Miller, S. A., Hall, H. K., & Mooney, P. A. (2009). Factors affecting the efficiency of micropropagation from lateral buds and shoot tips of Rubus. Plant Cell Tissue and Organ Culture, 99(1), 17-25.
Yang, X., Wang, X., Zhang, X., Hu, J., Wang, J., Chen, Y., & Zhu, Y. (2025). Effects of Platycodon grandiflorum seeds exposure to static magnetic field on germination and early seedling growth. Bio Electro Magnetics, 46(1), e22530.
Yaycili, O., & Alikamanoglu, S. (2005). The effect of magnetic field on Paulownia tissue cultures. Plant Cell, Tissue and Organ Culture, 83, 109-114.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Nemesio Santamaría, Ernestina Vásquez, Carlos Millones

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license