Efecto anticoccidial de los extractos de taninos de Tara spinosa (Molina) Britton & Rose sobre la supervivencia de los ovocitos apicomplejos de Eimeria sp.
DOI:
https://doi.org/10.57188/manglar.2025.029Keywords:
Eimeria, ooquistes, aves de corral, taninos, coccidiosAbstract
Se estudió un extracto acuoso de taninos hidrolizables del pericarpio de plantas de tara utilizando frutos de vainas recolectadas en las tierras altas de la región La Libertad en el norte del Perú. La presencia de taninos en el extracto se verificó mediante el uso de la prueba de tricloruro de hierro (FeCl₃) y se calculó una concentración de 45% de taninos análogos al ácido gálico utilizando un método espectrofotométrico. El extracto se aplicó sobre ooquistes vivos de Eimeria sp. presentes en la vacuna viva EVANT® (esta formulación contiene especies de coccidios con patogenicidad específica para aves de corral). Los ooquistes fueron expuestos a diez tratamientos con concentraciones aumentadas y dos controles con cinco réplicas para cada uno. La inspección microscópica se realizó regularmente después del tiempo de exposición con el objetivo de detectar la integridad de la membrana celular. Los resultados muestran que el mayor número de ooquistes afectados por los extractos se produjo a una concentración de 50000 ppm después de 48horas de exposición in vitro, por lo que sugiere que el extracto de tanino de tara tiene propiedades anticoccidiales sobre los parásitos que afectan a las aves de corral. Se recomiendan estudios adicionales para investigar el efecto de los extractos de tara sobre los ovocitos in vivo, y su eventual incorporación como ingrediente en alimentos para aves de producción avícola.
Downloads
References
Abbas, R. Z., Abbas, A., Iqbal, Z., Raza, M. A., Hussain, K., Ahmed, T., et al. (2020). In vitro anticoccidial activity of Vitis vinifera extract on oocysts of different Eimeria species of broiler chicken. Journal of the Hellenic Veterinary Medical Society, 71(3), 2267–2272. https://doi.org/10.12681/jhvms.25071
Abo-Aziza, F. A. M., El-Metenawy, T. M., Rabie, N. S., Hassan, E. R., Elbayoumi, K. M., Mekky, H. M., et al. (2022). Comparative study between chemical anticoccidial medication and natural prepared products on experimentally infected broiler chickens. Journal of Parasitic Diseases, 46(3), 1–12. https://doi.org/10.1007/s12639-022-01545-8
Abudabos, A. M., Alyemni, A. H., Swilam, E. O., & Al-Ghadi, M. Q. (2017). Comparative anticoccidial effect of some natural products against Eimeria spp. infection on performance traits, intestinal lesion, and oocyst number in broiler. Pakistan Journal of Zoology, 49(6), 1989–1995. http://dx.doi.org/10.17582/journal.pjz/2017.49.6.1989.1995
Ahad, S., Tanveer, S., Malik, T. A., & Nawchoo, I. A. (2018). Anticoccidial activity of fruit peel of Punica granatum L. Microbial Pathogenesis, 116, 78–83. https://doi.org/10.1016/j.micpath.2018.01.015
Ammendolia, D. A., Bement, W. M., & Brumell, J. H. (2021). Plasma membrane integrity: Implications for health and disease. BMC Biology, 19(1), 1–29. https://doi.org/10.1186/s12915-021-00972-y
Awais, M. M., Akhtar, M., Anwar, M. I., & Khaliq, K. (2018). Evaluation of Saccharum officinarum L. bagasse-derived polysaccharides as native immunomodulatory and anticoccidial agents in broilers. Veterinary Parasitology, 249, 74–81. https://doi.org/10.1016/j.vetpar.2017.11.012
Barbehenn, R., & Constabel, P. (2011). Tannins in plant-herbivore interactions. Phytochemistry, 72(13), 1551–1565. https://doi.org/10.1016/j.phytochem.2011.01.040
Brotons-Canto, A., Urueña, C. P., Imbuluzqueta, I., Luque-Michel, E., Martinez-López, A. L., Ballesteros-Ramírez, R., et al. (2023). Encapsulated Phytomedicines against Cancer: Overcoming the "Valley of Death". Pharmaceutics, 15(4), 1038. https://doi.org/10.3390/pharmaceutics15041038
Chambi, F., Chirinos, R., Pedreschi, R., Betalleluz-Pallardel, I., Debaste, F., & Campos, D. (2013). Antioxidant potential of hydrolyzed polyphenolic extracts from tara (Caesalpinia spinosa) pods. Industrial Crops and Products, 47, 145–152. https://doi.org/10.1016/j.indcrop.2013.03.009
Cheng, P., Wang, C., Zhang, L., Fei, C., Liu, Y., Wang, M., et al. (2022). Label-free quantitative proteomic analysis of ethanamizuril-resistant versus -sensitive strains of Eimeria tenella. Parasites and Vectors, 15(1), 1–13. https://doi.org/10.1186/s13071-022-05412-6
Choi, J., & Kim, W. K. (2020). Dietary application of tannins as a potential mitigation strategy for current challenges in poultry production: A review. Animals, 10(12), 1–21. https://doi.org/10.3390/ani10122389
De La Cruz-Noriega, M., Benites, S. M., Rodríguez-Haro, I. M., Salazar-Castillo, M. L., Rojas-Villacorta, W., Otiniano, N. M., et al. (2023). Antimicrobial potential of tara hydroalcoholic extract (Caesalpinia spinosa) against Streptococcus associated with strep throat. Processes, 11(6), 1–14. https://doi.org/10.3390/pr11061754
Directive 2010/63/EU. (2010). On the protection of animals used for scientific purposes. Official Journal of the European Union, 276, 33–79.
EMA. (2018). Evant (vacuna contra la coccidiosis aviar, viva). European Medicines Agency. https://www.ema.europa.eu/en/documents/overview/evant-epar-medicine-overview_es.pdf
Engels, C., Schieber, A., & Gänzle, M. G. (2011). Inhibitory spectra and modes of antimicrobial action of gallotannins from mango kernels (Mangifera indica L.). Applied and Environmental Microbiology, 77(7), 2215–2223. https://doi.org/10.1128/AEM.02521-10
Fatemi, A., Razavi, S. M., Asasi, K., & Torabi Goudarzi, M. (2015). Effects of Artemisia annua extracts on sporulation of Eimeria oocysts. Parasitology Research, 114(3), 1207–1211. https://doi.org/10.1007/s00436-014-4304-z
García, E., Fernández, I., & Fuentes, A. (2015). Determinación de polifenoles totales por el método de Folin-Ciocalteu. Universidad Politécnica de Valencia. España.
Gurbanova, T. (2025). First detection of Eimeria (Apicomplexa: Eimeriidae) in Emys orbicularis in Azerbaijan. Egyptian Journal of Veterinary Science, 56(6), 1207–1211. https://doi.org/10.21608/EJVS.2024.277112.1922
Güven, E., Beckstead, R. B., Kar, S., Vatansever, Z., & Karaer, Z. (2013). Molecular identification of Eimeria species of broiler chickens in Turkey. Ankara Universitesi Veteriner Fakultesi Dergisi, 60(4), 245–250. https://doi.org/10.1501/vetfak_0000002587
Huang, Q., Liu, X., Zhao, G., Hu, T., & Wang, Y. (2018). Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Animal Nutrition, 4(2), 137–150. https://doi.org/10.1016/j.aninu.2017.09.004
IBM Corp. (2020). IBM SPSS Statistics for Windows (Version 27.0) [Computer software]. IBM Corp. https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-27
Lasso, P., Gomez-Cadena, A., Urueña, C., Donda, A., Martinez-Usatorre, A., Romero, P., et al. (2020). An Immunomodulatory Gallotanin-Rich Fraction from Caesalpinia spinosa Enhances the Therapeutic Effect of Anti-PD-L1 in Melanoma. Frontiers in immunology, 11, 584959. https://doi.org/10.3389/fimmu.2020.584959
Lee, A., Dal Pont, G. C., Farnell, M. B., Jarvis, S., Battaglia, M., Arsenault, R. J., et al. (2021). Supplementing chestnut tannins in the broiler diet mediates a metabolic phenotype of the ceca. Poultry Science, 100(1), 47–54. https://doi.org/10.1016/j.psj.2020.09.085
León, M., & Mancheno, M. (2020). Actividad antifúngica de compuestos fenólicos de tara (Caesalpinia spinosa) frente a Fusarium graminearum. Revista de Investigación Agraria y Ambiental, 12(1), 39–50. https://doi.org/10.22490/21456453.3755
Liman, M. S., Hassen, A., McGaw, L. J., Sutovsky, P., & Holm, D. E. (2022). Potential use of tannin extracts as additives in semen destined for cryopreservation: A review. Animals, 12(9), 1–12. https://doi.org/10.3390/ani12091130
Lock, O. (2016). Investigación fitoquímica: Métodos en el estudio de productos naturales. 3ra Edición. Fondo Editorial de la Pontificia Universidad Católica del Perú. 287 pp.
López-Osorio, S., Chaparro-Gutiérrez, J. J., & Gómez-Osorio, L. M. (2020). Overview of poultry Eimeria life cycle and host-parasite interactions. Frontiers in Veterinary Science, 7(July), 1–8. https://doi.org/10.3389/fvets.2020.00384
Lozano, J., Almeida, C., Vicente, E., Sebastião, D., Palomero, A. M., Cazapal-Monteiro, C., et al. (2024). Assessing the efficacy of the ovicidal fungus Mucor circinelloides in reducing coccidia parasitism in peacocks. Scientific Reports, 14(1), 1–8. https://doi.org/10.1038/s41598-024-61816-7
Malada, P. M., Mogashoa, M. M., & Masoko, P. (2022). The evaluation of cytotoxic effects, antimicrobial activity, antioxidant activity, and combination effect of Viscum rotundifolium and Mystroxylon aethiopicum. South African Journal of Botany, 147, 790–798. https://doi.org/10.1016/j.sajb.2022.03.025
Mamaní, A., Filippone, M. P., Grellet, C., Welin, B., Castagnaro, A. P., & Ricci, J. C. D. (2012). Pathogen-induced accumulation of an ellagitannin elicits plant defense response. Molecular Plant-Microbe Interactions, 25(11), 1430–1439. https://doi.org/10.1094/MPMI-12-11-0306
Mares, M. M., Al-Quraishy, S., & Abdel-Gaber, R. (2023). Morphological and molecular characterization of Eimeria spp. infecting domestic poultry Gallus gallus in Riyadh City, Saudi Arabia. Parasitology Research, 122, 1–10. https://doi.org/10.1007/s00436-023-07561-4
Miranda-Martínez, A. (2012). Farmacognosia y productos naturales. Editorial Félix Varela. Cuba.
Murga-Orrillo, H., Abanto-Rodríguez, C., Fernandes Silva Dionisio, L., Chu-Koo, F. W., Schwartz, G., Núñez Bustamante, E., et al. (2023). Tara (Caesalpinia spinosa) in natural and agroforestry systems under an altitudinal gradient in the Peruvian Andes: Responses to soil and climate variation. Agronomy, 13(2), 1–16. https://doi.org/10.3390/agronomy13020282
Olivas-Aguirre, F. J., Wall-Medrano, A., González-Aguilar, G. A., López-Díaz, J. A., Álvarez-Parrilla, E., De La Rosa, L. A., et al. (2015). Taninos hidrolizables: Bioquímica, aspectos nutricionales y analíticos y efectos en la salud. Nutrición Hospitalaria, 31(1), 55–66. https://doi.org/10.3305/nh.2015.31.1.7699
Oyofo, B. A., Droleskey, R. E., Norman, J. O., Mollenhauer, H. H., Ziprin, R. L., Corrier, D. E., et al. (1989). Inhibition by mannose of in vitro colonization of chicken small intestine by Salmonella typhimurium. Poultry Science, 68(10), 1351–1356. https://doi.org/10.3382/ps.0681351
Prieto, K., Arévalo, C., Lasso, P., Carlosama, C., Urueña, C., Fiorentino, S., et al. (2023). Plant extracts modulate cellular stress to inhibit replication of mouse Coronavirus MHV-A59. Heliyon, 10(1), e23403. https://doi.org/10.1016/j.heliyon.2023.e23403
Prins, J.-B., Smith, D., & Degryse, A.-D. (2014). Chapter 5 – The European framework on research animal welfare regulations and guidelines. In Laboratory Animals: Regulations and Recommendations for Global Collaborative Research (pp. 117–188). https://doi.org/10.1016/B978-0-12-397856-1.00005-2
Raimondi, A. (1857). Elementos de Botánica aplicada a la Medicina y a la Industria en los cuales se trata especialmente de las Plantas del Perú. In Philipps-Universität Marburg. Alemania. https://doi.org/10.17192/eb2013.0019
Razavi, S. M., Soltan, M. S., Abbasian, K., Karami, A., & Nazifi, S. (2024). Acute phase response and oxidative stress in coccidiosis: A review in domestic animals. Veterinary Parasitology, 331, 110286. https://doi.org/10.1016/j.vetpar.2024.110286
Richane, A., Rim, B. M., Wided, M., Riadh, K., Khaoula, A., Nizar, M., et al. (2022). Variability of phenolic compounds and antioxidant activities of ten Ceratonia siliqua L. provenances. Biochemical Systematics and Ecology, 104, 104486. https://doi.org/10.1016/j.bse.2022.104486
Rojo-Rubio, R., González-Cortazar, M., Olmedo-Juárez, A., Zamilpa, A., Arece-García, J., Mendoza-Martínez, G., et al. (2019). Caesalpinia coriaria fruits and leaves extracts possess in vitro ovicidal activity against Haemonchus contortus and Haemonchus placei. Veterinaria México, 6(4), 1–12. https://doi.org/10.22201/fmvz.24486760e.2019.3.601
Romani, A., Simone, G., Campo, M., Moncini, L., & Bernini, R. (2021). Sweet chestnut standardized fractions from sustainable circular process and green tea extract: In vitro inhibitory activity against phytopathogenic fungi for innovative applications in green agriculture. PLOS ONE, 16(2), 1–16. https://doi.org/10.1371/journal.pone.0247298
Sangay-Tucto, S., Le Roux, C., Zúñiga-Dávila, D., & Duponnois, R. (2024). Exploring rhizobial diversity in tara (Caesalpinia spinosa) by trapping with pea (Pisum sativum). Scientia Agropecuaria, 15(4) 503–512. https://doi.org/10.17268/sci.agropecu.2024.037
Sánchez, D., Cahuascanco, B., Ramirez, J., Cusimayta, R., & Colque, J. (2024). Presencia de Eimerias en alpacas destetadas y alternativa de control sin ocasionar daño hepático. Manglar, 21(2), 191-195. https://doi.org/10.57188/manglar.2024.020
Sharrajabian, M., & Sun, W. (2024). The importance of application of medicinal plants and natural products in poultry health management. Notulae Scientia Biologicae, 16(3), 1–15. https://doi.org/10.55779/NSB16311994
Sillanpää, M., Engström, M. T., Tähtinen, P., Green, R. J., Käpylä, J., Näreaho, A., et al. (2023). Tannins can have direct interactions with anthelmintics: Investigations by isothermal titration calorimetry. Molecules, 28(13), 1–17. https://doi.org/10.3390/molecules28135261
Tonda, R. M., Rubach, J. K., Lumpkins, B. S., Mathis, G. F., & Poss, M. J. (2018). Effects of tannic acid extract on performance and intestinal health of broiler chickens following coccidiosis vaccination and/or a mixed-species Eimeria challenge. Poultry Science, 97(9), 3031–3042. https://doi.org/10.3382/ps/pey158
Valdiviezo-Campos, J. E., Rodriguez-Aredo, C. D., Ruiz-Reyes, S. G., Venegas-Casanova, E. A., Bussmann, R. W., & Ganoza-Yupanqui, M. L. (2024). Identification of polyphenols by UPLC-MS/MS and their potential in silico antiviral activity from medicinal plants in Trujillo, Peru. Journal of Pharmacy and Pharmacognosy Research, 12(2), 323–347. https://doi.org/10.56499/jppres23.1807_12.2.323
Vázquez-Flores, A. A., Álvarez-Parrilla, E., López-Díaz, J. A., Wall-Medrano, A., & De la Rosa, L. A. (2012). Taninos hidrolizables y condensados: Naturaleza química, ventajas y desventajas de su consumo. TECNOCIENCIA Chihuahua, 6(2), 84–93.
WFO. (2023). Plants of the World Online: Tara spinosa (Molina) Britton & Rose. World Flora Online. http://www.worldfloraonline.org/taxon/wfo-0000183619
Yan, Y., Zheng, X., Wu, X., Wang, L., He, J., Hao, B., et al. (2024). Battling Salmonella enteritidis infections: Integrating proteomics and in vivo assessment of Galla Chinensis tannic acid. BMC Veterinary Research, 20(1), 1–15. https://doi.org/10.1186/s12917-024-04036-5
Zea, C. R., et al. (2019). Efecto de cinco niveles de goma de tara sobre el comportamiento productivo, mineralización ósea y morfometría intestinal en pollos de carne. Revista de Investigaciones Veterinarias del Perú, 30(2), 663–675. https://doi.org/10.15381/rivep.v30i2.16100
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Gary León-Burgos, Carmen Marín-Tello, Roxana Mendoza-Mendocilla, Elio Castañeda-Marín, Noé Costilla-Sánchez, Jorge Vásquez-Kool

This work is licensed under a Creative Commons Attribution 4.0 International License.

Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license