Delimitation of irrigation management zones in banana cultivation using satellite images and physical and chemical soil attributes
DOI:
https://doi.org/10.57188/Palabras clave:
management zones, spectral indices, Smart map, Sen2r, Sentinel 2Resumen
In banana plantations, irrigation is managed in a homogeneous way, which is inadequate due to the variability of the soil in different areas, leading to significant losses in productivity. To address this issue, the delimitation of agricultural management zones (AMZ) was proposed, based on the spatial variability of the physical and chemical soil attributes, along with information obtained from spectral indices derived from satellite imagery. Additionally, the soil-climate-plant relationship was considered to improve the accuracy and reliability of the information. For this purpose, Sentinel-2 satellite images were processed, and various spectral indices were calculated using the Sen2R package. These indices allowed the generation of AMZ in QGIS using the Smart Map plugin. The satellite images facilitated the delimitation of homogeneous zones based on spectral information. Through a correlation matrix between the mean values of physical and chemical soil variables and the spectral indices per hectare, a correlation was identified between the water stress index and factors such as sand content, electrical conductivity, soil texture class, and available water. The geospatial analysis allowed for the accurate delimitation of irrigation zones, compared to those defined solely by the physical and chemical properties of the soil. The vegetation’s response to soil characteristics, such as water retention capacity, cation exchange, and base assimilation in the soil, demonstrated the effectiveness of this delimitation.
Descargas
Referencias
Adla, S., Rai, N. K., Karumanchi, S. H., Tripathi, S., Disse, M., & Pande, S. (2020). Laboratory Calibration and Performance Evaluation of Low-Cost Capacitive and Very Low-Cost Resistive Soil Moisture Sensors. Sensors, 20(2), 363. https://doi.org/10.3390/s20020363
Ayele, G. T., Demissie, S. S., Jemberrie, M. A., Jeong, J., & Hamilton, D. P. (2019). Terrain Effects on the Spatial Variability of Soil Physical and Chemical Properties. Soil Systems, 4(1), 1. https://doi.org/10.3390/soilsystems4010001
Balafoutis, A. T., Beck, B., Fountas, S., Tsiropoulos, Z., Vangeyte, J., van der Wal, T., Soto-Embodas, I., Gómez-Barbero, M., & Pedersen, S. M. (2017). Smart Farming Technologies – Description, Taxonomy and Economic Impact (pp. 21–77). https://doi.org/10.1007/978-3-319-68715-5_2
Berrú-Ayala, J., Hernandez-Rojas, D., Morocho-Díaz, P., Novillo-Vicuña, J., Mazon-Olivo, B., & Pan, A. (2020). SCADA System Based on IoT for Intelligent Control of Banana Crop Irrigation (pp. 243–256). https://doi.org/10.1007/978-3-030-42517-3_19
Blum, A. (2011). Plant Water Relations, Plant Stress and Plant Production. In Plant Breeding for Water-Limited Environments (pp. 11–52). Springer New York. https://doi.org/10.1007/978-1-4419-7491-4_2
Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 151, 61–69. https://doi.org/10.1016/j.compag.2018.05.012
Coelho, E. F., Santos, M. R. dos, Donato, S. L. R., Cruz, J. L., Oliveira, P. M. de, & Castricini, A. (2019). Soil-water-plant relationship and fruit yield under partial root-zone drying irrigation on banana crop. Scientia Agricola, 76(5), 362–367. https://doi.org/10.1590/1678-992x-2017-0258
Cohen, S., Cohen, Y., Alchanatis, V., & Levi, O. (2013). Combining spectral and spatial information from aerial hyperspectral images for delineating homogenous management zones. Biosystems Engineering, 114(4), 435–443. https://doi.org/10.1016/j.biosystemseng.2012.09.003
Cui, X., Han, W., Zhang, H., Dong, Y., Ma, W., Zhai, X., Zhang, L., & Li, G. (2023). Estimating and mapping the dynamics of soil salinity under different crop types using Sentinel-2 satellite imagery. Geoderma, 440, 116738. https://doi.org/10.1016/j.geoderma.2023.116738
Damian, J. M., Pias, O. H. de C., Cherubin, M. R., Fonseca, A. Z. da, Fornari, E. Z., & Santi, A. L. (2020). Applying the NDVI from satellite images in delimiting management zones for annual crops. Scientia Agricola, 77(1). https://doi.org/10.1590/1678-992x-2018-0055
Ding, Z., Kheir, A. M. S., Ali, M. G. M., Ali, O. A. M., Abdelaal, A. I. N., Lin, X., Zhou, Z., Wang, B., Liu, B., & He, Z. (2020). The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Scientific Reports, 10(1), 2736. https://doi.org/10.1038/s41598-020-59650-8
El-Hendawy, S., Al-Suhaibani, N., Elsayed, S., Refay, Y., Alotaibi, M., Dewir, Y. H., Hassan, W., & Schmidhalter, U. (2019). Combining biophysical parameters, spectral indices and multivariate hyperspectral models for estimating yield and water productivity of spring wheat across different agronomic practices. PLOS ONE, 14(3), e0212294. https://doi.org/10.1371/journal.pone.0212294
Erazo-Mesa, E., Murillo-Sandoval, P. J., Ramírez-Gil, J. G., Benavides, K. Q., & Sánchez, A. E. (2024). IS-SAR: an irrigation scheduling web application for Hass avocado orchards based on Sentinel-1 images. Irrigation Science, 42(3), 595–609. https://doi.org/10.1007/s00271-023-00889-0
Evans, E. A., Ballen, F. H., & Siddiq, M. (2020). Banana Production, Global Trade, Consumption Trends, Postharvest Handling, and Processing. In Handbook of Banana Production, Postharvest Science, Processing Technology, and Nutrition (pp. 1–18). Wiley. https://doi.org/10.1002/9781119528265.ch1
Ghag, S. B., & Ganapathi, T. R. (2017). Genetically modified bananas: To mitigate food security concerns. Scientia Horticulturae, 214, 91–98. https://doi.org/10.1016/j.scienta.2016.11.023
Gomez Selvaraj, M., Vergara, A., Montenegro, F., Alonso Ruiz, H., Safari, N., Raymaekers, D., Ocimati, W., Ntamwira, J., Tits, L., Omondi, A. B., & Blomme, G. (2020). Detection of banana plants and their major diseases through aerial images and machine learning methods: A case study in DR Congo and Republic of Benin. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 110–124. https://doi.org/10.1016/j.isprsjprs.2020.08.025
Gorokhova, I. N., & Pankova, E. I. (2024). Organizational Problems of Soil Salinization Monitoring on Irrigated Lands. Arid Ecosystems, 14(1), 17–24. https://doi.org/10.1134/S2079096124010062
HARRIS, A., BRYANT, R., & BAIRD, A. (2005). Detecting near-surface moisture stress in spp. Remote Sensing of Environment, 97(3), 371–381. https://doi.org/10.1016/j.rse.2005.05.001
Igor, B., Leon Josip, T., & Paulo, P. (2020). Agriculture Management Impacts on Soil Properties and Hydrological Response in Istria (Croatia). Agronomy, 10(2), 282. https://doi.org/10.3390/agronomy10020282
Kureel, N., Sarup, J., Matin, S., Goswami, S., & Kureel, K. (2022). Modelling vegetation health and stress using hypersepctral remote sensing data. Modeling Earth Systems and Environment, 8(1), 733–748. https://doi.org/10.1007/s40808-021-01113-8
Luna-Romero, A., Ramírez, I., Sánchez, C., Conde, J., Agurto, L., & Villaseñor, D. (2018). Spatio-temporal distribution of precipitation in the Jubones river basin, Ecuador: 1975-2013. Scientia Agropecuaria, 9(1), 63–70. https://doi.org/10.17268/sci.agropecu.2018.01.07
MIAO, Y., MULLA, D. J., & ROBERT, P. C. (2018). An integrated approach to site-specific management zone delineation. Frontiers of Agricultural Science and Engineering. https://doi.org/10.15302/J-FASE-2018230
Mndela, Y., Ndou, N., & Nyamugama, A. (2023). Irrigation Scheduling for Small-Scale Crops Based on Crop Water Content Patterns Derived from UAV Multispectral Imagery. Sustainability, 15(15), 12034. https://doi.org/10.3390/su151512034
Panigrahi, N., Thompson, A. J., Zubelzu, S., & Knox, J. W. (2021). Identifying opportunities to improve management of water stress in banana production. Scientia Horticulturae, 276, 109735. https://doi.org/10.1016/j.scienta.2020.109735
Pereira, G. W., Valente, D. S. M., Queiroz, D. M. de, Coelho, A. L. de F., Costa, M. M., & Grift, T. (2022). Smart-Map: An Open-Source QGIS Plugin for Digital Mapping Using Machine Learning Techniques and Ordinary Kriging. Agronomy, 12(6), 1350. https://doi.org/10.3390/agronomy12061350
Priori, S., Barbetti, R., Meini, L., Morelli, A., Zampolli, A., & D’Avino, L. (2019). Towards Economic Land Evaluation at the Farm Scale Based on Soil Physical-Hydrological Features and Ecosystem Services. Water, 11(8), 1527. https://doi.org/10.3390/w11081527
Priori, S., Pellegrini, S., Vignozzi, N., & Costantini, E. A. C. (2020). Soil Physical-Hydrological Degradation in the Root-Zone of Tree Crops: Problems and Solutions. Agronomy, 11(1), 68. https://doi.org/10.3390/agronomy11010068
Ranghetti, L., Boschetti, M., Nutini, F., & Busetto, L. (2020). “sen2r”: An R toolbox for automatically downloading and preprocessing Sentinel-2 satellite data. Computers & Geosciences, 139, 104473. https://doi.org/10.1016/j.cageo.2020.104473
Rhyma, P. P., Norizah, K., Hamdan, O., Faridah-Hanum, I., & Zulfa, A. W. (2020). Integration of normalised different vegetation index and Soil-Adjusted Vegetation Index for mangrove vegetation delineation. Remote Sensing Applications: Society and Environment, 17, 100280. https://doi.org/10.1016/j.rsase.2019.100280
Sawadogo, A., Dossou-Yovo, E. R., Kouadio, L., Zwart, S. J., Traoré, F., & Gündoğdu, K. S. (2023). Assessing the biophysical factors affecting irrigation performance in rice cultivation using remote sensing derived information. Agricultural Water Management, 278, 108124. https://doi.org/10.1016/j.agwat.2022.108124
Saxton, K. E., & Rawls, W. J. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 70(5), 1569–1578. https://doi.org/10.2136/sssaj2005.0117
Song, T., Cui, X., & Yu, G. (2015). A general vector-based algorithm to generate weighted Voronoi diagrams based on ArcGIS Engine. 2015 IEEE International Conference on Mechatronics and Automation (ICMA), 941–946. https://doi.org/10.1109/ICMA.2015.7237612
Song, X., Wang, J., Huang, W., Liu, L., Yan, G., & Pu, R. (2009). The delineation of agricultural management zones with high resolution remotely sensed data. Precision Agriculture, 10(6), 471–487. https://doi.org/10.1007/s11119-009-9108-2
Tian, S. (2021). Vector-Based Realisation of Geographical Voronoi Treemaps With the ArcGIS Engine. Journal of Information Technology Research, 14(1), 37–54. https://doi.org/10.4018/JITR.2021010103
Valle Júnior, L. C. G. do, Vourlitis, G. L., Curado, L. F. A., Palácios, R. da S., Nogueira, J. de S., Lobo, F. de A., Islam, A. R. M. T., & Rodrigues, T. R. (2021). Evaluation of FAO-56 Procedures for Estimating Reference Evapotranspiration Using Missing Climatic Data for a Brazilian Tropical Savanna. Water, 13(13), 1763. https://doi.org/10.3390/w13131763
Varma, V., & Bebber, D. P. (2019). Climate change impacts on banana yields around the world. Nature Climate Change, 9(10), 752–757. https://doi.org/10.1038/s41558-019-0559-9
Vélez, S., Ariza-Sentís, M., Panić, M., Ivošević, B., Stefanović, D., Kaivosoja, J., & Valente, J. (2024). Speeding up UAV-based crop variability assessment through a data fusion approach using spatial interpolation for site-specific management. Smart Agricultural Technology, 8, 100488. https://doi.org/10.1016/j.atech.2024.100488
Verheijen, F. G. A., Zhuravel, A., Silva, F. C., Amaro, A., Ben-Hur, M., & Keizer, J. J. (2019). The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma, 347, 194–202. https://doi.org/10.1016/j.geoderma.2019.03.044
Villaseñor, D., Cobos, J. D., Cruz, A., Rivera, W., Mendoza, M. J., & Miranda, K. (2021, December 5). Estudio de suelos con fines de generación de Unidades de Gerenciamiento Agronómico. Día Mundial Del Suelo.
Villazón Gómez, J. A., Noris Noris, P., & Martín Gutiérrez, G. (2021). Determinación de la precipitación efectiva en áreas agropecuarias de la provincia de Holguín. Idesia (Arica), 39(2), 85–90. https://doi.org/10.4067/S0718-34292021000200085
Villegas Santa, L., & Castañeda Sánchez, D. A. (2020). Multivariate analysis to model yield variability for defined management zones in a banana agroecosystem. DYNA, 87(214), 165–172. https://doi.org/10.15446/dyna.v87n214.84827
Welikhe, P., Quansah, J. E., Fall, S., & McElhenney, W. (2017). Estimation of Soil Moisture Percentage Using LANDSAT-based Moisture Stress Index. Journal of Remote Sensing & GIS, 06(02). https://doi.org/10.4172/2469-4134.1000200
Wikantika, K., Ghazali, M. F., Dwivany, F. M., Novianti, C., Yayusman, L. F., & Sutanto, A. (2022). Integrated Studies of Banana on Remote Sensing, Biogeography, and Biodiversity: An Indonesian Perspective. Diversity, 14(4), 277. https://doi.org/10.3390/d14040277
Wu, T., Zhang, Z., Wang, Q., Jin, W., Meng, K., Wang, C., Yin, G., Xu, B., & Shi, Z. (2024). Estimating rice leaf area index at multiple growth stages with Sentinel-2 data: An evaluation of different retrieval algorithms. European Journal of Agronomy, 161, 127362. https://doi.org/10.1016/j.eja.2024.127362
Yonow, T., Ramirez-Villegas, J., Abadie, C., Darnell, R. E., Ota, N., & Kriticos, D. J. (2019). Black Sigatoka in bananas: Ecoclimatic suitability and disease pressure assessments. PLOS ONE, 14(8), e0220601. https://doi.org/10.1371/journal.pone.0220601
Zinkernagel, J., Maestre-Valero, Jose. F., Seresti, S. Y., & Intrigliolo, D. S. (2020). New technologies and practical approaches to improve irrigation management of open field vegetable crops. Agricultural Water Management, 242, 106404. https://doi.org/10.1016/j.agwat.2020.106404
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Jonathan Zhiminaicela-Cabrera, Diego Villaseñor-Ortizo Villaseñor-Ortizo, Eduardo Tusa, Angel Luna-Romero
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Manglar is an open access journal distributed under the terms and conditions of Creative Commons Attribution 4.0 International license