La goma de tara (Caesalpinia spinosa): Un polisacárido con gran potencial en la industria alimentaria y farmacéutica

Authors

  • Joselin Paucarchuco-Soto Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional Autónoma Altoandina de Tarma. Ciudad Universitaria, Acobamba, Tarma, Perú. https://orcid.org/0000-0002-1424-1249

DOI:

https://doi.org/10.57188/manglar.2025.026

Keywords:

goma de tara , polisacárido, biodegradable, bioactividades, biocompatibilidad

Abstract

En lugar de materiales sintéticos o derivados del petróleo, la investigación actual en las industrias alimentaria y farmacéutica se ha centrado en el desarrollo de materiales biodegradables y sostenibles, debido a su baja toxicidad y biocompatibilidad. En ese contexto, la goma de tara que es un polisacárido natural soluble en agua y con grupos hidroxilos fácilmente modificables se está utilizando ampliamente en el desarrollo de fármacos y como aditivo de grado alimenticio para la formulación de geles, películas y recubrimientos comestibles. En la presente revisión sistemática, se analiza la información disponible en las bases de datos Scopus, Scielo y Science Direct, siguiendo la directriz PRISMA. Los resultados del análisis bibliométrico, mostraron que los polisacáridos de la goma de tara se pueden aplicar en el envasado de alimentos sensibles al pH y en la formulación de fármacos con propiedades biocompatibles. La naturaleza no tóxica y las propiedades reológicas pseudoplásticas, así como el comportamiento sinérgico de la goma de tara con otros polisacáridos hacen que este aditivo se pueda aplicar en diversos campos industriales como la alimentaria, cosmética, textil y farmacéutica. Varios estudios que modifican las propiedades de la goma de tara sugieren que este polisacárido puede aplicarse como estabilizador, espesante y biocontrolador del deterioro en los alimentos.

Downloads

Download data is not yet available.

References

Abd Alla, S. G., Sen, M., & El-Naggar, A. W. M. (2012). Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation. Carbohydrate Polymers, 89(2), 478-485. https://doi.org/10.1016/J.CARBPOL.2012.03.031

Antoniou, J., Liu, F., Majeed, H., Qazi, H. J., & Zhong, F. (2014). Physicochemical and thermomechanical characterization of tara gum edible films: Effect of polyols as plasticizers. Carbohydrate Polymers, 111, 359-365. https://doi.org/10.1016/J.CARBPOL.2014.04.005

Askari, V. R., Fadaei, M. S., Dabbaghi, M. M., Fadaei, M. R., & Baradaran Rahimi, V. (2024). Ionotropical cross-linked carboxymethylated gums-based systems in drug delivery. Ionotropic Cross-Linking of Biopolymers: Applications in Drug Delivery, 245-274. https://doi.org/10.1016/B978-0-323-96116-5.00022-3

Ba, J., Jin, L. Q., & Yao, W. R. (2013). Chemical Structure and Rheological Properties of Tara Polysaccharide Gum. Advanced Materials Research, 821-822, 986-989. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.821-822.986

Barbosa, B. S. T., & Garcia-Rojas, E. E. (2022). Double emulsions as delivery systems for iron: Stability kinetics and improved bioaccessibility in infants and adults. Current Research in Food Science, 5, 718-725. https://doi.org/10.1016/J.CRFS.2022.04.003

Carpentier, J., Conforto, E., Chaigneau, C., Vendeville, J. E., & Maugard, T. (2022). Microencapsulation and controlled release of α-tocopherol by complex coacervation between pea protein and tragacanth gum: A comparative study with arabic and tara gums. Innovative Food Science & Emerging Technologies, 77, 102951. https://doi.org/10.1016/J.IFSET.2022.102951

Chen, X., Sun-Waterhouse, D., Yao, W., Li, X., Zhao, M., & You, L. (2021). Free radical-mediated degradation of polysaccharides: Mechanism of free radical formation and degradation, influence factors and product properties. Food Chemistry, 365, 130524. https://doi.org/10.1016/J.FOODCHEM.2021.130524

Chen, Y., Xu, L., Wang, Y., Chen, Z., Zhang, M., & Chen, H. (2020). Characterization and functional properties of a pectin/tara gum based edible film with ellagitannins from the unripe fruits of Rubus chingii Hu. Food Chemistry, 325, 126964. https://doi.org/10.1016/J.FOODCHEM.2020.126964

Chi, M., Liu, C., Shen, J., Dong, Z., Yang, Z., & Wang, L. (2018). Antibacterial Superabsorbent Polymers from Tara Gum Grafted Poly(Acrylic acid) Embedded Silver Particles. Polymers 2018, Vol. 10, Page 945, 10(9), 945. https://doi.org/10.3390/POLYM10090945

da Silva Soares, B., Constantino, A. B. T., & Garcia-Rojas, E. E. (2024). Microencapsulation of curcumin by complex coacervation of lactoferrin and carboxymethyl tara gum for incorporation into edible films. Food Hydrocolloids for Health, 5, 100178. https://doi.org/10.1016/J.FHFH.2024.100178

Dai, L., Wang, T., Liu, Y., Lan, Y., Ji, L., Jiang, J., & Li, P. (2023). Fluorescence probe technique for determining the hydrophobic interactions and critical aggregation concentrations of Gleditsia microphylla gum, circular Gleditsia sinensis gum, and tara gum. International Journal of Biological Macromolecules, 247, 125707. https://doi.org/10.1016/J.IJBIOMAC.2023.125707

Damiri, F., Rojekar, S., Bachra, Y., Varma, R. S., Andra, S., Balu, S., Pardeshi, C. V., Patel, P. J., Patel, H. M., Paiva-Santos, A. C., Berrada, M., & García, M. C. (2023). Polysaccharide-based nanogels for biomedical applications: A comprehensive review. Journal of Drug Delivery Science and Technology, 84, 104447. https://doi.org/10.1016/J.JDDST.2023.104447

Del Piano, M., Balzarini, M., Carmagnola, S., Pagliarulo, M., Tari, R., Nicola, S., Deidda, F., & Pane, M. (2014). Assessment of the capability of a gelling complex made of tara gum and the exopolysaccharides produced by the microorganism streptococcus thermophilus ST10 to prospectively restore the gut physiological barrier: A pilot study. Journal of Clinical Gastroenterology, 48, S56-S61. https://doi.org/10.1097/MCG.0000000000000254

Desai, S., Prajapati, V., & Chandarana, C. (2022). Chemistry, Biological Activities, and Uses of Tara Gum. Springer, Cham. https://doi.org/10.1007/978-3-030-76523-1_11-2

Drago, L., De Vecchi, E., Toscano, M., Vassena, C., Altomare, G., & Pigatto, P. (2014). Treatment of atopic dermatitis eczema with a high concentration of Lactobacillus salivarius LS01 associated with an innovative gelling complex a pilot study on adults. Journal of Clinical Gastroenterology, 48, S47-S51. https://doi.org/10.1097/MCG.0000000000000249

Dursun Capar, T., & Yalcin, H. (2021). Protein/polysaccharide conjugation via Maillard reactions in an aqueous media: Impact of protein type, reaction time and temperature. LWT, 152, 112252. https://doi.org/10.1016/J.LWT.2021.112252

Eze, F. N., Eze, R. C., & Ovatlarnporn, C. (2023). Insights into the remarkable attenuation of hen egg white lysozyme amyloid fibril formation mediated by biogenic gold nanoparticles stabilized by quercetin-functionalized tara gum. International Journal of Biological Macromolecules, 232, 123044. https://doi.org/10.1016/J.IJBIOMAC.2022.12.263

Eze, F. N., Ovatlarnporn, C., Jayeoye, T. J., Nalinbenjapun, S., & Sripetthong, S. (2022). One-pot biofabrication and characterization of Tara gum/Riceberry phenolics–silver nanogel: A cytocompatible and green nanoplatform with multifaceted biological applications. International Journal of Biological Macromolecules, 206, 521-533. https://doi.org/10.1016/J.IJBIOMAC.2022.02.140

Fierro, O., Siano, F., Bianco, M., Vasca, E., & Picariello, G. (2024). Comprehensive molecular level characterization of protein- and polyphenol-rich tara (Caesalpinia spinosa) seed germ flour suggests novel hypothesis about possible accidental hazards. Food Research International, 181, 114119. https://doi.org/10.1016/J.FOODRES.2024.114119

Ghosh, T., Borkotoky, S. S., & Katiyar, V. (2019). Green Composites Based on Aliphatic and Aromatic Polyester: Opportunities and Application. Materials Horizons: From Nature to Nanomaterials, 249-275. https://doi.org/10.1007/978-981-32-9804-0_12

Ghosh, T., & Katiyar, V. (2021). Edible Food Packaging: An Introduction. Materials Horizons: From Nature to Nanomaterials, 1-23. https://doi.org/10.1007/978-981-33-6169-0_1

Göksel Saraç, M. (2023). Extraction, structural properties, and applications of tara gum. Natural Gums: Extraction, Properties, and Applications, 453-473. https://doi.org/10.1016/B978-0-323-99468-2.00016-4

Huamaní-Meléndez, V. J., Mauro, M. A., & Darros-Barbosa, R. (2021). Physicochemical and rheological properties of aqueous Tara gum solutions. Food Hydrocolloids, 111, 106195. https://doi.org/10.1016/J.FOODHYD.2020.106195

Ibieta, G., Bustos, A. S., Ortiz-Sempértegui, J., Linares-Pastén, J. A., & Peñarrieta, J. M. (2023). Molecular characterization of a galactomannan extracted from Tara (Caesalpinia spinosa) seeds. Scientific Reports, 13(1), 1-11. https://doi.org/10.1038/s41598-023-49149-3

Karaki, N., Aljawish, A., Humeau, C., Muniglia, L., & Jasniewski, J. (2016). Enzymatic modification of polysaccharides: Mechanisms, properties, and potential applications: A review. Enzyme and Microbial Technology, 90, 1-18. https://doi.org/10.1016/J.ENZMICTEC.2016.04.004

Li, S., Xiong, Q., Lai, X., Li, X., Wan, M., Zhang, J., Yan, Y., Cao, M., Lu, L., Guan, J., Zhang, D., & Lin, Y. (2016). Molecular Modification of Polysaccharides and Resulting Bioactivities. Comprehensive Reviews in Food Science and Food Safety, 15(2), 237-250. https://doi.org/10.1111/1541-4337.12161

Ligarda-Samanez, C. A., Moscoso-Moscoso, E., Choque-Quispe, D., Palomino-Rincón, H., Martínez-Huamán, E. L., Huamán-Carrión, M. L., Peralta-Guevara, D. E., Aroni-Huamán, J., Arévalo-Quijano, J. C., Palomino-Rincón, W., Cruz, G. D. la, Ramos-Pacheco, B. S., Muñoz-Saenz, J. C., & Muñoz-Melgarejo, M. (2022). Microencapsulation of Erythrocytes Extracted from Cavia porcellus Blood in Matrices of Tara Gum and Native Potato Starch. Foods, 11(14), 2107. https://doi.org/10.3390/FOODS11142107

Liu, F., Chang, W., Chen, M., Xu, F., Ma, J., & Zhong, F. (2020). Film-forming properties of guar gum, tara gum and locust bean gum. Food Hydrocolloids, 98, 105007. https://doi.org/10.1016/J.FOODHYD.2019.03.028

Ma, Q., Cao, L., Liang, T., Li, J., Lucia, L. A., & Wang, L. (2018). Active Tara Gum/PVA Blend Films with Curcumin-Loaded CTAC Brush-TEMPO-Oxidized Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 6(7), 8926-8934. https://doi.org/10.1021/ACSSUSCHEMENG.8B01281

Ma, Q., Du, L., & Wang, L. (2017). Tara gum/polyvinyl alcohol-based colorimetric NH3 indicator films incorporating curcumin for intelligent packaging. Sensors and Actuators B: Chemical, 244, 759-766. https://doi.org/10.1016/J.SNB.2017.01.035

Ma, Q., Du, L., Yang, Y., & Wang, L. (2017). Rheology of film-forming solutions and physical properties of tara gum film reinforced with polyvinyl alcohol (PVA). Food Hydrocolloids, 63, 677-684. https://doi.org/10.1016/J.FOODHYD.2016.10.009

Ma, Q., Hu, D., Wang, H., & Wang, L. (2016). Tara gum edible film incorporated with oleic acid. Food Hydrocolloids, 56, 127-133. https://doi.org/10.1016/J.FOODHYD.2015.11.033

Ma, Q., Hu, D., & Wang, L. (2016). Preparation and physical properties of tara gum film reinforced with cellulose nanocrystals. International Journal of Biological Macromolecules, 86, 606-612. https://doi.org/10.1016/J.IJBIOMAC.2016.01.104

Ma, Q., Ren, Y., Gu, Z., & Wang, L. (2017). Developing an intelligent film containing Vitis amurensis husk extracts: The effects of pH value of the film-forming solution. Journal of Cleaner Production, 166, 851-859. https://doi.org/10.1016/J.JCLEPRO.2017.08.099

Ma, Q., Ren, Y., & Wang, L. (2017). Investigation of antioxidant activity and release kinetics of curcumin from tara gum/ polyvinyl alcohol active film. Food Hydrocolloids, 70, 286-292. https://doi.org/10.1016/J.FOODHYD.2017.04.018

Ma, Q., & Wang, L. (2016). Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sensors and Actuators B: Chemical, 235, 401-407. https://doi.org/10.1016/J.SNB.2016.05.107

Mandal, S., Chi, H., Moss, R. E., Dhital, P., Babatunde, E. O., Gurav, R., & Hwang, S. (2024). Seed gum-based polysaccharides hydrogels for sustainable agriculture: A review. International Journal of Biological Macromolecules, 263, 130339. https://doi.org/10.1016/J.IJBIOMAC.2024.130339

Martinelli, A., Giannini, L., & Branduardi, P. (2021). Enzymatic Modification of Cellulose To Unlock Its Exploitation in Advanced Materials. ChemBioChem, 22(6), 974-981. https://doi.org/10.1002/CBIC.202000643

Mohammadi Nafchi, A., Cheng, L. H., & Karim, A. A. (2011). Effects of plasticizers on thermal properties and heat sealability of sago starch films. Food Hydrocolloids, 25(1), 56-60. https://doi.org/10.1016/J.FOODHYD.2010.05.005

Mortensen, A., Aguilar, F., Crebelli, R., Di Domenico, A., Frutos, M. J., Galtier, P., Gott, D., Gundert‐Remy, U., Lambré, C., Leblanc, J., Lindtner, O., Moldeus, P., Mosesso, P., Oskarsson, A., Parent‐Massin, D., Stankovic, I., Waalkens‐Berendsen, I., Woutersen, R. A., Wright, M., … Dusemund, B. (2017). Re‐evaluation of tara gum (E 417) as a food additive. EFSA Journal, 15(6). https://doi.org/10.2903/J.EFSA.2017.4863

Moscoso-Moscoso, E., Ligarda-Samanez, C. A., Choque-Quispe, D., Huamán-Carrión, M. L., Arévalo-Quijano, J. C., De la Cruz, G., Luciano-Alipio, R., Calsina Ponce, W. C., Sucari-León, R., Quispe-Quezada, U. R., & Calderón Huamaní, D. F. (2024). Preliminary Assessment of Tara Gum as a Wall Material: Physicochemical, Structural, Thermal, and Rheological Analyses of Different Drying Methods. Polymers, 16, 838. https://doi.org/10.3390/POLYM16060838

Mukherjee, K., Dutta, P., Badwaik, H. R., Saha, A., Das, A., & Giri, T. K. (2023). Food industry applications of Tara gum and its modified forms. Food Hydrocolloids for Health, 3, 100107. https://doi.org/10.1016/J.FHFH.2022.100107

Mukherjee, K., Roy, S., & Giri, T. K. (2023). Effect of intragranular/extragranular tara gum on sustained gastrointestinal drug delivery from semi-IPN hydrogel matrices. International Journal of Biological Macromolecules, 253, 127176. https://doi.org/10.1016/J.IJBIOMAC.2023.127176

Nisar, S., Pandit, A. H., Nadeem, M., Pandit, A. H., Rizvi, M. M. A., & Rattan, S. (2021). γ-Radiation induced L-glutamic acid grafted highly porous, pH-responsive chitosan hydrogel beads: A smart and biocompatible vehicle for controlled anti-cancer drug delivery. International Journal of Biological Macromolecules, 182, 37-50. https://doi.org/10.1016/J.IJBIOMAC.2021.03.134

Pérez-Córdoba, L. J., Galecio-Rojas, M., Peña-Carrasco, F., Ibarz, A., Velezmoro-Sánchez, C., & Martínez-Tapia, P. (2024). Effect of ultraviolet-irradiation on the physicochemical and disintegrability properties of nanocomposite tunta starch:tara gum films reinforced with starch nanocrystals. Polymer-Plastics Technology and Materials, 63(3), 299-311. https://doi.org/10.1080/25740881.2023.2285828

Priyadarsini, M., & Biswal, T. (2021). Green synthesis, swelling behaviour and orthopaedic application of polysaccharide based hydrogel. Indian Journal of Chemical Technology (IJCT), 27(6), 515-520. https://doi.org/10.56042/IJCT.V27I6.27763

Pushpamalar, J., Veeramachineni, A. K., Owh, C., & Loh, X. J. (2016). Biodegradable Polysaccharides for Controlled Drug Delivery. ChemPlusChem, 81(6), 504-514. https://doi.org/10.1002/CPLU.201600112

Qi, X., Zhang, Y., Yu, H., & Xie, J. (2023). Research on the Properties of Polysaccharides, Starch, Protein, Pectin, and Fibre in Food Processing. Foods, 12(2), 249. https://doi.org/10.3390/FOODS12020249

Qin, X., Li, R., Zhu, S., Hu, J., Zeng, X., Zhang, X., Xu, H., Kong, W., Liang, J., Zhang, H., Zhang, J., & Wang, J. (2020). A comparative study of sulfated tara gum: RSM optimization and structural characterization. International Journal of Biological Macromolecules, 150, 189-199. https://doi.org/10.1016/J.IJBIOMAC.2020.02.031

Quequezana Bedregal, M., Medrano de Jara, E., Palza Cordero, H., & Miranda Zanardi, L. (2023). Development and characterization of novel packaging films from composite mixtures of rice-starch, tara gum and pectin. Journal of Food Science and Technology, 60(3), 1153-1162. https://doi.org/10.1007/S13197-023-05669-4/METRICS

Raj, G. V. S. B., & Dash, K. K. (2022). Microencapsulation of Dragon Fruit Peel Extract by Freeze-Drying Using Hydrocolloids: Optimization by Hybrid Artificial Neural Network and Genetic Algorithm. Food and Bioprocess Technology, 15(9), 2035-2049. https://doi.org/10.1007/S11947-022-02867-4/METRICS

Raj, V., Lee, J. H., Shim, J. J., & Lee, J. (2021). Recent findings and future directions of grafted gum karaya polysaccharides and their various applications: A review. Carbohydrate Polymers, 258, 117687. https://doi.org/10.1016/J.CARBPOL.2021.117687

Raj, V., Shim, J. J., & Lee, J. (2020). Grafting modification of okra mucilage: Recent findings, applications, and future directions. Carbohydrate Polymers, 246, 116653. https://doi.org/10.1016/J.CARBPOL.2020.116653

Ramos, F., & Hernández, I. (2020). Synergic Effects on the Viscosity of Sodium Carboxymethylcellulose in Mixtures with Xanthan, Guar and Tara Gum. Springer Proceedings in Materials, 113-117. https://doi.org/10.1007/978-3-030-27701-7_24

Sabale, V., Paranjape, A., Patel, V., & Sabale, P. (2017). Characterization of natural polymers from jackfruit pulp, calendula flowers and tara seeds as mucoadhesive and controlled release components in buccal tablets. International Journal of Biological Macromolecules, 95, 321-330. https://doi.org/10.1016/J.IJBIOMAC.2016.11.078

Sahdev, A. K., Raorane, C. J., Shastri, D., Raj, V., Singh, A., & Kim, S. C. (2022). Update on modified chitosan frameworks and their applications for food, wastewater, toxic heavy metals, dyes treatment and cancer drug delivery. Journal of Environmental Chemical Engineering, 10(6), 108656. https://doi.org/10.1016/J.JECE.2022.108656

Santos, M. B., dos Santos, C. H. C., de Carvalho, M. G., de Carvalho, C. W. P., & Garcia-Rojas, E. E. (2019). Physicochemical, thermal and rheological properties of synthesized carboxymethyl tara gum (Caesalpinia spinosa). International Journal of Biological Macromolecules, 134, 595-603. https://doi.org/10.1016/J.IJBIOMAC.2019.05.025

Santos, M. B., Geraldo de Carvalho, M., & Garcia-Rojas, E. E. (2021). Carboxymethyl tara gum-lactoferrin complex coacervates as carriers for vitamin D3: Encapsulation and controlled release. Food Hydrocolloids, 112, 106347. https://doi.org/10.1016/J.FOODHYD.2020.106347

Shen, J., Li, B., Zhan, X., & Wang, L. (2018). A One Pot Method for Preparing an Antibacterial Superabsorbent Hydrogel with a Semi-IPN Structure Based on Tara Gum and Polyquaternium-7. Polymers 2018, Vol. 10, Page 696, 10(7), 696. https://doi.org/10.3390/POLYM10070696

Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12), 634-643. https://doi.org/10.1016/J.TIFS.2008.07.003

Soto, J. P., Santivañez, G. W. Q., Morales, K. R. M., & Victorio, J. P. E. (2023). Effect of edible coating based on potato peel starch (solanum tuberosa) Huasahuasina - Tarma on prolonging the shelf life of blackberry (RUBUS ULMIFOLIUS). KANYÚ, 1(2.Especial), 6-17. https://doi.org/10.61210/KANY.V1I2.ESPECIAL.46

Spizzirri, U. G., Caputo, P., Oliviero Rossi, C., Crupi, P., Muraglia, M., Rago, V., Malivindi, R., Clodoveo, M. L., Restuccia, D., & Aiello, F. (2022). A Tara Gum/Olive Mill Wastewaters Phytochemicals Conjugate as a New Ingredient for the Formulation of an Antioxidant-Enriched Pudding. Foods, 11(2), 158. https://doi.org/10.3390/FOODS11020158/S1

Sudirgo, M. M., Surya, R. A., Kristianto, H., Prasetyo, S., & Sugih, A. K. (2023). Application of xanthan gum as coagulant-aid for decolorization of synthetic Congo red wastewater. Heliyon, 9(4), e15011. https://doi.org/10.1016/j.heliyon.2023.e15011

Urrútia, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507-511. https://doi.org/10.1016/J.MEDCLI.2010.01.015

Vicariotto, F., Mogna, L., & Del Piano, M. (2014). Effectiveness of the two microorganisms Lactobacillus fermentum LF15 and Lactobacillus plantarum LP01, formulated in slow-release vaginal tablets, in women affected by bacterial vaginosis: A pilot study. Journal of Clinical Gastroenterology, 48, S106-S112. https://doi.org/10.1097/MCG.0000000000000226

Wu, Y., Ding, W., & He, Q. (2018). The gelation properties of tara gum blended with κ-carrageenan or xanthan. Food Hydrocolloids, 77, 764-771. https://doi.org/10.1016/J.FOODHYD.2017.11.018

Wu, Y., Ding, W., Jia, L., & He, Q. (2015). The rheological properties of tara gum (Caesalpinia spinosa). Food Chemistry, 168, 366-371. https://doi.org/10.1016/J.FOODCHEM.2014.07.083

Yeomans, M. R., & Boakes, S. (2016). That smells filling: Effects of pairings of odours with sweetness and thickness on odour perception and expected satiety. Food Quality and Preference, 54, 128-136. https://doi.org/10.1016/J.FOODQUAL.2016.07.010

Zhu, T., Mao, J., Cheng, Y., Liu, H., Lv, L., Ge, M., Li, S., Huang, J., Chen, Z., Li, H., Yang, L., Lai, Y., Huang, J. Y., Li, H. Q., Lai, Y. K., Chen, Z., Yang, L., Zhu, T. X., Cheng, Y., … Lv, L. (2019). Recent Progress of Polysaccharide-Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Advanced Materials Interfaces, 6(17), 1900761. https://doi.org/10.1002/ADMI.201900761

Downloads

Published

2025-06-30

How to Cite

Paucarchuco-Soto, J. (2025). La goma de tara (Caesalpinia spinosa): Un polisacárido con gran potencial en la industria alimentaria y farmacéutica. Manglar, 22(2), 245-254. https://doi.org/10.57188/manglar.2025.026

Similar Articles

1-10 of 388

You may also start an advanced similarity search for this article.